1
|
Nandi S, Pumera M. Transition metal dichalcogenide-based materials for rechargeable aluminum-ion batteries: A mini-review. CHEMSUSCHEM 2024; 17:e202301434. [PMID: 38212248 DOI: 10.1002/cssc.202301434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/07/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Rechargeable aluminum-ion batteries (AIBs) have emerged as a promising candidate for energy storage applications and have been extensively investigated over the past few years. Due to their high theoretical capacity, nature of abundance, and high safety, AIBs can be considered an alternative to lithium-ion batteries. However, the electrochemical performance of AIBs for large-scale applications is still limited due to the poor selection of cathode materials. Transition metal dichalcogenides (TMDs) have been regarded as appropriate cathode materials for AIBs due to their wide layer spacing, large surface area, and distinct physiochemical characteristics. This mini-review provides a succinct summary of recent research progress on TMD-based cathode materials in non-aqueous AIBs. The latest developments in the benefits of utilizing 3D-printed electrodes for AIBs are also explored.
Collapse
Affiliation(s)
- Sunny Nandi
- New Technologies - Research Centre, University of West Bohemia, Univerzitní 8, Plzeň, 30614, Czech Republic
| | - Martin Pumera
- New Technologies - Research Centre, University of West Bohemia, Univerzitní 8, Plzeň, 30614, Czech Republic
- Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ, 616 00, Czech Republic
- Energy Research Institute @ NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Nanyang Technological University, 50 Nanyang Drive, Singapore, 03722, Singapore
- Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800, Ostrava, Czech Republic
| |
Collapse
|
2
|
Thi Yein W, Wang Q, Kim DS. Piezoelectric catalytic driven advanced oxidation process using two-dimensional metal dichalcogenides for wastewater pollutants remediation. CHEMOSPHERE 2024; 353:141524. [PMID: 38403122 DOI: 10.1016/j.chemosphere.2024.141524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
The public and society have increasingly recognized numerous grave environmental issues, including water pollution, attributed to the rapid expansion of industrialization and agriculture. Renewable energy-driven catalytic advanced oxidation processes (AOPs) represent a green, sustainable, and environmentally friendly approach to meet the demands of environmental remediation. In this context, 2D transition metal dichalcogenides (TMDCs) piezoelectric materials, with their non-centrosymmetric crystal structure, exhibit unique features. They create dipole polarization, inducing a built-in electric field that generates polarized holes and electrons and triggers redox reactions, thereby facilitating the generation of reactive oxygen species for wastewater pollutant remediation. A broad spectrum of 2D TMDCs piezoelectric materials have been explored in self-integrated Fenton-like processes and persulfate activation processes. These materials offer a more simplistic and practical method than traditional approaches. Consequently, this review highlights recent advancements in 2D TMDCs piezoelectric catalysts and their roles in wastewater pollutant remediation through piezocatalytic-driven AOPs, such as Fenton-like processes and sulfate radicals-based oxidation processes.
Collapse
Affiliation(s)
- Win Thi Yein
- Department of Environmental Science and Engineering, Ewha Womans University, New 11-1, Daehyeon-dong, Seodaemun-gu, Seoul, 120-750, Republic of Korea; Department of Industrial Chemistry, University of Yangon, Republic of the Union of Myanmar, Myanmar
| | - Qun Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Dong-Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, New 11-1, Daehyeon-dong, Seodaemun-gu, Seoul, 120-750, Republic of Korea.
| |
Collapse
|
3
|
Muthu P, Rajagopal S, Saju D, Kesavan V, Dellus A, Sadhasivam L, Chandrasekaran N. Review of Transition Metal Chalcogenides and Halides as Electrode Materials for Thermal Batteries and Secondary Energy Storage Systems. ACS OMEGA 2024; 9:7357-7374. [PMID: 38405478 PMCID: PMC10882709 DOI: 10.1021/acsomega.3c08809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Transition metal chalcogenides and halides (TMCs and TMHs) have been extensively used and reported as electrode materials in diverse primary and secondary batteries. This review summarizes the suitability of TMCs and TMHs as electrode materials focusing on thermal batteries (utilized for defense applications) and energy storage systems like mono- and multivalent rechargeable batteries. The report also identifies the specific physicochemical properties that need to be achieved for the same materials to be employed as cathode materials in thermal batteries and anode materials in monovalent rechargeable systems. For example, thermal stability of the materials plays a crucial role in delivering the performance of the thermal battery system, whereas the electrical conductivity and layered structure of similar materials play a vital role in enhancing the electrochemical performance of the mono- and multivalent rechargeable batteries. It can be summarized that nonlayered CoS2, FeS2, NiS2, and WS2 were found to be ideal as cathode materials for thermal batteries primarily due to their better thermal stability, whereas the layered structures of these materials with a coating of carbon allotrope (CNT, graphene, rGO) were found to be suitable as anode materials for monovalent alkali metal ion rechargeable batteries. On the other hand, vanadium, titanium, molybdenum, tin, and antimony based chalcogenides were found to be suitable as cathode materials for multivalent rechargeable batteries due to the high oxidation state of cathode materials which resists the stronger field produced during the interaction of di- and trivalent ions with the cathode material facilitating higher energy density with minimal structural and volume changes at a high rate of discharge.
Collapse
Affiliation(s)
- Premnath Muthu
- Electroplating
Metal Finishing Division, CSIR-Central Electrochemical
Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Sudha Rajagopal
- Electroplating
Metal Finishing Division, CSIR-Central Electrochemical
Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Devishree Saju
- Electroplating
Metal Finishing Division, CSIR-Central Electrochemical
Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Vidyashri Kesavan
- Electroplating
Metal Finishing Division, CSIR-Central Electrochemical
Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Arun Dellus
- Electroplating
Metal Finishing Division, CSIR-Central Electrochemical
Research Institute, Karaikudi 630003, Tamil Nadu, India
| | - Loganathan Sadhasivam
- Defence
Research and Development Organisation-RCI, Hyderabad 500069, Telangana, India
| | - Naveen Chandrasekaran
- Electroplating
Metal Finishing Division, CSIR-Central Electrochemical
Research Institute, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
4
|
Gu M, Rao AM, Zhou J, Lu B. Molecular modulation strategies for two-dimensional transition metal dichalcogenide-based high-performance electrodes for metal-ion batteries. Chem Sci 2024; 15:2323-2350. [PMID: 38362439 PMCID: PMC10866370 DOI: 10.1039/d3sc05768b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024] Open
Abstract
In the past few decades, great efforts have been made to develop advanced transition metal dichalcogenide (TMD) materials as metal-ion battery electrodes. However, due to existing conversion reactions, they still suffer from structural aggregation and restacking, unsatisfactory cycling reversibility, and limited ion storage dynamics during electrochemical cycling. To address these issues, extensive research has focused on molecular modulation strategies to optimize the physical and chemical properties of TMDs, including phase engineering, defect engineering, interlayer spacing expansion, heteroatom doping, alloy engineering, and bond modulation. A timely summary of these strategies can help deepen the understanding of their basic mechanisms and serve as a reference for future research. This review provides a comprehensive summary of recent advances in molecular modulation strategies for TMDs. A series of challenges and opportunities in the research field are also outlined. The basic mechanisms of different modulation strategies and their specific influences on the electrochemical performance of TMDs are highlighted.
Collapse
Affiliation(s)
- Mingyuan Gu
- School of Physics and Electronics, Hunan University Changsha P. R. China
| | - Apparao M Rao
- Department of Physics and Astronomy, Clemson Nanomaterials Institute, Clemson University Clemson SC 29634 USA
| | - Jiang Zhou
- School of Materials Science and Engineering, Central South University Changsha 410083 P. R. China
| | - Bingan Lu
- School of Physics and Electronics, Hunan University Changsha P. R. China
| |
Collapse
|
5
|
Cheng J, Jin Y, Zhao J, Jing Q, Gu B, Wei J, Yi S, Li M, Nie W, Qin Q, Zhang D, Zheng G, Che R. From VIB- to VB-Group Transition Metal Disulfides: Structure Engineering Modulation for Superior Electromagnetic Wave Absorption. NANO-MICRO LETTERS 2023; 16:29. [PMID: 37994956 PMCID: PMC10667208 DOI: 10.1007/s40820-023-01247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/11/2023] [Indexed: 11/24/2023]
Abstract
The laminated transition metal disulfides (TMDs), which are well known as typical two-dimensional (2D) semiconductive materials, possess a unique layered structure, leading to their wide-spread applications in various fields, such as catalysis, energy storage, sensing, etc. In recent years, a lot of research work on TMDs based functional materials in the fields of electromagnetic wave absorption (EMA) has been carried out. Therefore, it is of great significance to elaborate the influence of TMDs on EMA in time to speed up the application. In this review, recent advances in the development of electromagnetic wave (EMW) absorbers based on TMDs, ranging from the VIB group to the VB group are summarized. Their compositions, microstructures, electronic properties, and synthesis methods are presented in detail. Particularly, the modulation of structure engineering from the aspects of heterostructures, defects, morphologies and phases are systematically summarized, focusing on optimizing impedance matching and increasing dielectric and magnetic losses in the EMA materials with tunable EMW absorption performance. Milestones as well as the challenges are also identified to guide the design of new TMDs based dielectric EMA materials with high performance.
Collapse
Affiliation(s)
- Junye Cheng
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China.
| | - Yongheng Jin
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jinghan Zhao
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Qi Jing
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Bailong Gu
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Jialiang Wei
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Shenghui Yi
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Mingming Li
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Wanli Nie
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China
| | - Qinghua Qin
- Department of Materials Science, Shenzhen MSU-BIT University, Shenzhen, 517182, People's Republic of China.
| | - Deqing Zhang
- School of Materials Science and Engineering, Qiqihar University, Qiqihar, 161006, People's Republic of China
| | - Guangping Zheng
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China.
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, People's Republic of China.
- Zhejiang Laboratory, Hangzhou, 311100, People's Republic of China.
| |
Collapse
|
6
|
Han X, Yang J, Zhang YW, Yu ZG. Molecular engineering on a MoS 2 interlayer for high-capacity and rapid-charging aqueous ion batteries. NANOSCALE ADVANCES 2023; 5:2639-2645. [PMID: 37143797 PMCID: PMC10153098 DOI: 10.1039/d3na00068k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
Rechargeable aqueous ion batteries (AIBs) play essential roles in the increasing demand for high-performance energy storage systems, and yet they are hampered by the lack of suitable cathode materials because of the sluggish intercalation kinetics. In this work, we develop an effective and feasible strategy to enhance the performance of AIBs by broadening the interlayer spacing by using intercalated CO2 molecules to promote the intercalation kinetics by using first principles simulations. Compared with pristine MoS2, the intercalation of CO2 molecules with a 3/4 ML coverage significantly increases the interlayer spacing to 9.383 Å from 6.369 Å and the diffusivity is boosted by 12 orders of magnitude for Zn ions, 13 orders for Mg ions and one order for Li ions. Moreover, the concentrations of intercalating Zn, Mg and Li ions are enhanced by 7, 1 and 5 orders of magnitude, respectively. The significantly increased diffusivity and intercalation concentration of metal ions signify that intercalating CO2 bilayer MoS2 is a promising cathode material to realize metal ion batteries with a rapid charging capability and high storage capacity. The strategy developed in this work can be generally applied to increase the metal ion storage capacity in transition metal dichalcogenide (TMD)- and other layered material-based cathodes and make them promising for next-generation rapidly rechargeable batteries.
Collapse
Affiliation(s)
- Xuefei Han
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (ASTAR) 1 Fusionopolis Way, #16-16 Connexis Singapore 138632 Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore Singapore 117575 Singapore
- AVIC Xi'an Flight Automatic Control Research Institute 710065 China
| | - Jing Yang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (ASTAR) 1 Fusionopolis Way, #16-16 Connexis Singapore 138632 Republic of Singapore
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (ASTAR) 1 Fusionopolis Way, #16-16 Connexis Singapore 138632 Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore Singapore 117575 Singapore
| | - Zhi Gen Yu
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (ASTAR) 1 Fusionopolis Way, #16-16 Connexis Singapore 138632 Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore Singapore 117575 Singapore
| |
Collapse
|
7
|
Yan X, Feng X, Hao B, Liu J, Yu Y, Qi J, Wang H, Wang Z, Hu Y, Fan X, Li C, Liu J. Enhancing the kinetics of vanadium oxides via conducting polymer and metal ions co-intercalation for high-performance aqueous zinc-ions batteries. J Colloid Interface Sci 2022; 628:204-213. [PMID: 35988515 DOI: 10.1016/j.jcis.2022.08.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 10/15/2022]
Abstract
Aqueous zinc-ions batteries with low cost, reliable safety, high theoretical specific capacity and eco-friendliness have captured conspicuous attention in large-scale energy storage. However, the developed cathodes often suffer from low electrical conductivity and sluggish Zn2+ diffusion kinetics, which severely hampers the development of aqueous zinc-ions batteries. Herein, we successfully prepare Mg/PANI/V2O5•nH2O (MPVO) nanosheets through conducting polymers (polyaniline) and metal ions (Mg2+) co-intercalated strategy and systematically explore its electrochemical performance as cathode materials for aqueous zinc-ion batteries. Benefitting from the synergistic effect of polyaniline and Mg2+ co-intercalated, the MPVO exhibits larger interlayer spacing and higher electrical conductivity than the single guest intercalation, which significantly enhances the electrochemical kinetics. As a consequence, the MPVO cathodes deliver superior specific capacity, rate capability and long-term cycling performance. Moreover, multiple characterizations and theoretical calculations are executed to expound the relevant mechanism.Therefore, this work provides a novel thought for the design of high-performance cathode materials for aqueous ZIBs.
Collapse
Affiliation(s)
- Xiaoteng Yan
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Xiaochen Feng
- College of Environment and Chemical Engineering, Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
| | - Boya Hao
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Jiajun Liu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Yiren Yu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Junjie Qi
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Honghai Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Zhiying Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Yuqi Hu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Chunli Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| | - Jiapeng Liu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
8
|
The Synthesis of Manganese Hydroxide Nanowire Arrays for a High-Performance Zinc-Ion Battery. NANOMATERIALS 2022; 12:nano12152514. [PMID: 35893482 PMCID: PMC9331603 DOI: 10.3390/nano12152514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/27/2023]
Abstract
The morphology, microstructure as well as the orientation of cathodic materials are the key issues when preparing high-performance aqueous zinc-ion batteries (ZIBs). In this paper, binder-free electrode Mn(OH)2 nanowire arrays were facilely synthesized via electrodeposition. The nanowires were aligned vertically on a carbon cloth. The as-prepared Mn(OH)2 nanowire arrays were used as cathode to fabricate rechargeable ZIBs. The vertically aligned configuration is beneficial to electron transport and the free space between the nanowires can provide more ion-diffusion pathways. As a result, Mn(OH)2 nanowire arrays yield a high specific capacitance of 146.3 Ma h g−1 at a current density of 0.5 A g−1. They also demonstrates ultra-high diffusion coefficients of 4.5 × 10−8~1.0 × 10−9 cm2 s−1 during charging and 1.0 × 10−9~2.7 × 10−11 cm−2 s−1 during discharging processes, which are one or two orders of magnitude higher than what is reported in the studies. Furthermore, the rechargeable Zn//Mn(OH)2 battery presents a good capacity retention of 61.1% of the initial value after 400 cycles. This study opens a new avenue to boost the electrochemical kinetics for high-performance aqueous ZIBs.
Collapse
|
9
|
Nanomaterials for Ion Battery Applications. NANOMATERIALS 2022; 12:nano12132293. [PMID: 35808129 PMCID: PMC9268245 DOI: 10.3390/nano12132293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023]
|
10
|
Ait Bahadou S, Ez-Zahraouy H. A first principles study of corundum V 2O 3 material as a promising anode for Li/Mg/Al-ion batteries. Phys Chem Chem Phys 2022; 24:26828-26835. [DOI: 10.1039/d2cp00596d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this work the electrochemical properties of corundum V2O3 are calculated using the first principle calculations. Our results highly recommend V2O3 as promising anode for both MIBs and AIBs.
Collapse
Affiliation(s)
- Samira Ait Bahadou
- Laboratory of Condensed Matter and Interdisciplinary Sciences, Unite de Recherche Labelliseìe CNRST, URL-CNRST-17, Faculty of Sciences, Mohammed V University of Rabat, Morocco
| | - Hamid Ez-Zahraouy
- Laboratory of Condensed Matter and Interdisciplinary Sciences, Unite de Recherche Labelliseìe CNRST, URL-CNRST-17, Faculty of Sciences, Mohammed V University of Rabat, Morocco
| |
Collapse
|
11
|
Recent Advances in Two-Dimensional Transition Metal Dichalcogenide Nanocomposites Biosensors for Virus Detection before and during COVID-19 Outbreak. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5070190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The deadly Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) outbreak has become one of the most challenging pandemics in the last century. Clinical diagnosis reports a high infection rate within a large population and a rapid mutation rate upon every individual infection. The polymerase chain reaction has been a powerful and gold standard molecular diagnostic technique over the past few decades and hence a promising tool to detect the SARS-CoV-2 nucleic acid sequences. However, it can be costly and involved in complicated processes with a high demand for on-site tests. This pandemic emphasizes the critical need for designing cost-effective and fast diagnosis strategies to prevent a potential viral source by ultrasensitive and selective biosensors. Two-dimensional (2D) transition metal dichalcogenide (TMD) nanocomposites have been developed with unique physical and chemical properties crucial for building up nucleic acid and protein biosensors. In this review, we cover various types of 2D TMD biosensors available for virus detection via the mechanisms of photoluminescence/optical, field-effect transistor, surface plasmon resonance, and electrochemical signals. We summarize the current state-of-the-art applications of 2D TMD nanocomposite systems for sensing proteins/nucleic acid from different types of lethal viruses. Finally, we identify and discuss the advantages and limitations of TMD-based nanocomposites biosensors for viral recognition.
Collapse
|