1
|
Kozłowski S, Osička J, Ilcikova M, Galeziewska M, Mrlik M, Pietrasik J. From Brush to Dendritic Structure: Tool for Tunable Interfacial Compatibility between the Iron-Based Particles and Silicone Oil in Magnetorheological Fluids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5297-5305. [PMID: 38430189 PMCID: PMC10938888 DOI: 10.1021/acs.langmuir.3c03736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/03/2024]
Abstract
Comprehensive magnetic particle stability together with compatibility between them and liquid medium (silicone oil) is still a crucial issue in the case of magnetorheological (MR) suspensions to guarantee their overall stability and MR performance. Therefore, this study is aimed at improving the interfacial stability between the carbonyl iron (CI) particles and silicone oil. In this respect, the particles were modified with polymer brushes and dendritic structures of poly(2-(trimethylsilyloxy)ethyl methacrylate) (PHEMATMS), called CI-brushes or CI-dendrites, respectively, and their stability properties (corrosion, thermo-oxidation, and sedimentation) were compared to neat CI ones. Compatibility of the obtained particles and silicone oil was investigated using contact angle and off-state viscosity investigation. Finally, the magneto-responsive capabilities in terms of yield stress and reproducibility of the MR phenomenon were thoroughly investigated. It was found that MR suspensions based on CI-brushes had significantly improved compatibility properties than those of neat CI ones; however, the CI-dendrites-based suspension possessed the best capabilities, while the MR performance was negligibly suppressed.
Collapse
Affiliation(s)
- Szymon Kozłowski
- Department
of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Josef Osička
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, University Institute, Trida T. Bati 5678, 76001Zlin,Czech
Republic
| | - Marketa Ilcikova
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, University Institute, Trida T. Bati 5678, 76001Zlin,Czech
Republic
- Slovak
Academy of Sciences, Polymer Institute, Dubravska cesta 9, 845 41 Bratislava, Slovakia
- Department
of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University, Vavreckova 5669, 76001Zlin,Czech
Republic
| | - Monika Galeziewska
- Department
of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| | - Miroslav Mrlik
- Centre
of Polymer Systems, Tomas Bata University
in Zlin, University Institute, Trida T. Bati 5678, 76001Zlin,Czech
Republic
| | - Joanna Pietrasik
- Department
of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| |
Collapse
|
2
|
Mokhtari F, Cheng Z, Wang CH, Foroughi J. Advances in Wearable Piezoelectric Sensors for Hazardous Workplace Environments. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300019. [PMID: 37287592 PMCID: PMC10242536 DOI: 10.1002/gch2.202300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/15/2023] [Indexed: 06/09/2023]
Abstract
Recent advances in wearable energy harvesting technology as solutions to occupational health and safety programs are presented. Workers are often exposed to harmful conditions-especially in the mining and construction industries-where chronic health issues can emerge over time. While wearable sensors technology can aid in early detection and long-term exposure tracking, powering them and the associated risks are often an impediment for their widespread use, such as the need for frequent charging and battery safety. Repetitive vibration exposure is one such hazard, e.g., whole body vibration, yet it can also provide parasitic energy that can be harvested to power wearable sensors and overcome the battery limitations. This review can critically analyze the vibration effect on workers' health, the limitations of currently available devices, explore new options for powering different personal protective equipment devices, and discuss opportunities and directions for future research. The recent progress in self-powered vibration sensors and systems from the perspective of the underlying materials, applications, and fabrication techniques is reviewed. Lastly, the challenges and perspectives are discussed for reference to the researchers who are interested in self-powered vibration sensors.
Collapse
Affiliation(s)
- Fatemeh Mokhtari
- Carbon NexusInstitute for Frontier MaterialsDeakin UniversityGeelongVictoria3216Australia
- Faculty of Engineering and Information SciencesUniversity of WollongongWollongongNSW2500Australia
| | - Zhenxiang Cheng
- Institute for Superconducting and Electronic MaterialsUniversity of WollongongWollongongNSW2500Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW2052Australia
- ARC Research Hub for Connected Sensors for HealthUniversity of New South WalesSydneyNSW2052Australia
| | - Javad Foroughi
- Faculty of Engineering and Information SciencesUniversity of WollongongWollongongNSW2500Australia
- School of Mechanical and Manufacturing EngineeringUniversity of New South WalesSydneyNSW2052Australia
- ARC Research Hub for Connected Sensors for HealthUniversity of New South WalesSydneyNSW2052Australia
- Department of Thoracic and Cardiovascular SurgeryWest German Heart and Vascular CenterUniversity of Duisburg‐EssenHufelandstraße 5545122EssenGermany
| |
Collapse
|
3
|
Magotra VK, Lee SJ, Kang TW, Inamdar AI, Kim DY, Im H, Jeon HC. High Power Generation with Reducing Agents Using Compost Soil as a Novel Electrocatalyst for Ammonium Fuel Cells. NANOMATERIALS 2022; 12:nano12081281. [PMID: 35457989 PMCID: PMC9029104 DOI: 10.3390/nano12081281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022]
Abstract
Ammonium toxicity is a significant source of pollution from industrial civilization that is disrupting the balance of natural systems, adversely affecting soil and water quality, and causing several environmental problems that affect aquatic and human life, including the strong promotion of eutrophication and increased dissolved oxygen consumption. Thus, a cheap catalyst is required for power generation and detoxification. Herein, compost soil is employed as a novel electrocatalyst for ammonium degradation and high-power generation. Moreover, its effect on catalytic activity and material performances is systematically optimized and compared by treating it with various reducing agents, including potassium ferricyanide, ferrocyanide, and manganese dioxide. Ammonium fuel was supplied to the compost soil ammonium fuel cell (CS-AFC) at concentrations of 0.1, 0.2, and 0.3 g/mL. The overall results show that ferricyanide affords a maximum power density of 1785.20 mW/m2 at 0.2 g/mL fuel concentration. This study focuses on high-power generation for CS-AFC. CS-AFCs are sustainable for many hours without any catalyst deactivation; however, they need to be refueled at regular intervals (every 12 h). Moreover, CS-AFCs afford the best performance when ferricyanide is used as the electron acceptor at the cathode. This study proposes a cheap electrocatalyst and possible solutions to the more serious energy generation problems. This study will help in recycling ammonium-rich wastewaters as free fuel for running CS-AFC devices to yield high-power generation with reducing agents for ammonium fuel cell power applications.
Collapse
Affiliation(s)
- Verjesh Kumar Magotra
- Nano Information Technology Academy, Dongguk University, Jung-Gu, Seoul 100715, Korea; (V.K.M.); (S.J.L.); (T.W.K.)
| | - Seung Joo Lee
- Nano Information Technology Academy, Dongguk University, Jung-Gu, Seoul 100715, Korea; (V.K.M.); (S.J.L.); (T.W.K.)
| | - Tae Won Kang
- Nano Information Technology Academy, Dongguk University, Jung-Gu, Seoul 100715, Korea; (V.K.M.); (S.J.L.); (T.W.K.)
| | - Akbar I. Inamdar
- Division of Physics and Semiconductor Science, Dongguk University, Jung-Gu, Seoul 100715, Korea; (A.I.I.); (D.Y.K.); (H.I.)
| | - Deuk Young Kim
- Division of Physics and Semiconductor Science, Dongguk University, Jung-Gu, Seoul 100715, Korea; (A.I.I.); (D.Y.K.); (H.I.)
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Jung-Gu, Seoul 100715, Korea; (A.I.I.); (D.Y.K.); (H.I.)
| | - Hee Chang Jeon
- Nano Information Technology Academy, Dongguk University, Jung-Gu, Seoul 100715, Korea; (V.K.M.); (S.J.L.); (T.W.K.)
- Correspondence:
| |
Collapse
|
4
|
Han R, Zheng L, Li G, Chen G, Ma S, Cai S, Li Y. Self-Poled Poly(vinylidene fluoride)/MXene Piezoelectric Energy Harvester with Boosted Power Generation Ability and the Roles of Crystalline Orientation and Polarized Interfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46738-46748. [PMID: 34546702 DOI: 10.1021/acsami.1c14007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Micropiezoelectric devices have become one of the most competitive candidates for use in self-powered flexible and portable electronic products because of their instant response and mechanic-electric conversion ability. However, achievement of high output performance of micropiezoelectric devices is still a significant and challenging task. In this study, a poly(vinylidene fluoride) (PVDF)/MXene piezoelectric microdevice was fabricated through a microinjection molding process. The synergistic effect of both an intense shear rate (>104 s-1) as well as numerous polar C-F functional groups in MXene flakes promoted the formation of β-form crystals of PVDF in which the crystallinity of β-form could reach as high as 59.9%. Moreover, the shear-induced shish-kebab crystal structure with a high orientation degree (fh = ∼0.9) and the stacked MXene acted as the driving force for the dipoles to regularly arrange and produce a self-polarizing effect. Without further polarization, the fabricated piezoelectric microdevices exhibited an open-circuit voltage of 15.2 V and a short-circuit current of 497.3 nA, under optimal conditions (400 mm s-1 and 1 wt % MXene). Impressively, such piezoelectric microdevices can be used for energy storage and for sensing body motion to monitor exercise, and this may have a positive impact on next-generation smart sports equipment.
Collapse
Affiliation(s)
- Rui Han
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Lang Zheng
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| | - Guangzhao Li
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Gang Chen
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Sude Ma
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Shuang Cai
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, Sichuan 610065, China
| |
Collapse
|