1
|
Wu K, He M, Mao B, Xing Y, Wei S, Jiang D, Wang S, Alkuhali AA, Guo J, Gan Z, Li M, Li X, Chen H. Enhanced delivery of CRISPR/Cas9 system based on biomimetic nanoparticles for hepatitis B virus therapy. J Control Release 2024; 374:293-311. [PMID: 39151831 DOI: 10.1016/j.jconrel.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The persistent presence of covalently closed circular DNA (cccDNA) in hepatocyte nuclei poses a significant obstacle to achieving a comprehensive cure for hepatitis B virus (HBV). Current applications of CRISPR/Cas9 for targeting and eliminating cccDNA have been confined to in vitro studies due to challenges in stable cccDNA expression in animal models and the limited non-immunogenicity of delivery systems. This study addresses these limitations by introducing a novel non-viral gene delivery system utilizing Gemini Surfactant (GS). The developed system creates stable and targeted CRISPR/Cas9 nanodrugs with a negatively charged surface through modification with red blood cell membranes (RBCM) or hepatocyte membranes (HCM), resulting in GS-pDNA@Cas9-CMs complexes. These GS-pDNA complexes demonstrated complete formation at a 4:1 w/w ratio. The in vitro transfection efficiency of GS-pDNA-HCM reached 54.61%, showing homotypic targeting and excellent safety. Additionally, the study identified the most effective single-guide RNA (sgRNA) from six sequences delivered by GS-pDNA@Cas9-HCM. Using GS-pDNA@Cas9-HCM, a significant reduction of 96.47% in in vitro HBV cccDNA and a 52.34% reduction in in vivo HBV cccDNA were observed, along with a notable decrease in other HBV-related markers. The investigation of GS complex uptake by AML-12 cells under varied time and temperature conditions revealed clathrin-mediated endocytosis (CME) for GS-pDNA and caveolin-mediated endocytosis (CVME) for GS-pDNA-HCM and GS-pDNA-RBCM. In summary, this research presents biomimetic gene-editing nanovectors based on GS (GS-pDNA@Cas9-CMs) and explores their precise and targeted clearance of cccDNA using CRISPR/Cas9, demonstrating good biocompatibility both in vitro and in vivo. This innovative approach provides a promising therapeutic strategy for advancing the cure of HBV.
Collapse
Affiliation(s)
- Kexin Wu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Miao He
- Laboratory Animal Center, Chongqing Medical University, Chongqing 400016, PR China
| | - Binli Mao
- Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Base, Chongqing 401329, PR China; Department of Blood Transfusion, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Yangchen Xing
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Shiqi Wei
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Dongjun Jiang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Shunyao Wang
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Asma A Alkuhali
- Department of Physiology and Pathophysiology, School of Basic Medical Science, Xi'an Jiaotong University, Shanxi 710049, PR China
| | - Jinjun Guo
- Bishan Hospital of Chongqing, Bishan Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Zongjie Gan
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan University, Sichuan 610041, PR China
| | - Xiaosong Li
- Clinical Molecular Medicine Testing Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China; Western (Chongqing) Collaborative Innovation Center for Intelligent Diagnostics and Digital Medicine, Chongqing National Biomedicine Industry Base, Chongqing 401329, PR China.
| | - Huali Chen
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
2
|
Shcharbin D, Zhogla V, Abashkin V, Gao Y, Majoral JP, Mignani S, Shen M, Bryszewska M, Shi X. Recent advances in multifunctional dendrimer-based complexes for cancer treatment. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1951. [PMID: 38456205 DOI: 10.1002/wnan.1951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
The application of nanotechnology in biological and medical fields have resulted in the creation of new devices, supramolecular systems, structures, complexes, and composites. Dendrimers are relatively new nanotechnological polymers with unique features; they are globular in shape, with a topological structure formed by monomeric subunit branches diverging to the sides from the central nucleus. This review analyzes the main features of dendrimers and their applications in biology and medicine regarding cancer treatment. Dendrimers have applications that include drug and gene carriers, antioxidant agents, imaging agents, and adjuvants, but importantly, dendrimers can create complex nanosized constructions that combine features such as drug/gene carriers and imaging agents. Dendrimer-based nanosystems include different metals that enhance oxidative stress, polyethylene glycol to provide biosafety, an imaging agent (a fluorescent, radioactive, magnetic resonance imaging probe), a drug or/and nucleic acid that provides a single or dual action on cells or tissues. One of major benefit of dendrimers is their easy release from the body (in contrast to metal nanoparticles, fullerenes, and carbon nanotubes), allowing the creation of biosafe constructions. Some dendrimers are already clinically approved and are being used as drugs, but many nanocomplexes are currently being studied for clinical practice. In summary, dendrimers are very useful tool in the creation of complex nanoconstructions for personalized nanomedicine. This article is categorized under: Diagnostic Tools > Diagnostic Nanodevices Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Viktoria Zhogla
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Viktar Abashkin
- Institute of Biophysics and Cell Engineering of NASB, Minsk, Belarus
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination du CNRS, Toulouse, France
- Université Toulouse, Toulouse, France
| | - Serge Mignani
- Centro de Química da Madeira (CQM), MMRG, Universidade da Madeira, Campus Universitário da Penteada, Funchal, Portugal
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, China
- Centro de Química da Madeira (CQM), MMRG, Universidade da Madeira, Campus Universitário da Penteada, Funchal, Portugal
| |
Collapse
|
3
|
Xie X, Yue T, Gu W, Cheng W, He L, Ren W, Li F, Piao JG. Recent Advances in Mesoporous Silica Nanoparticles Delivering siRNA for Cancer Treatment. Pharmaceutics 2023; 15:2483. [PMID: 37896243 PMCID: PMC10609930 DOI: 10.3390/pharmaceutics15102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Silencing genes using small interfering (si) RNA is a promising strategy for treating cancer. However, the curative effect of siRNA is severely constrained by low serum stability and cell membrane permeability. Therefore, improving the delivery efficiency of siRNA for cancer treatment is a research hotspot. Recently, mesoporous silica nanoparticles (MSNs) have emerged as bright delivery vehicles for nucleic acid drugs. A comprehensive understanding of the design of MSN-based vectors is crucial for the application of siRNA in cancer therapy. We discuss several surface-functionalized MSNs' advancements as effective siRNA delivery vehicles in this paper. The advantages of using MSNs for siRNA loading regarding considerations of different shapes, various options for surface functionalization, and customizable pore sizes are highlighted. We discuss the recent investigations into strategies that efficiently improve cellular uptake, facilitate endosomal escape, and promote cargo dissociation from the MSNs for enhanced intracellular siRNA delivery. Also, particular attention was paid to the exciting progress made by combining RNAi with other therapies to improve cancer therapeutic outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fanzhu Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.X.); (T.Y.); (W.G.); (W.C.); (L.H.); (W.R.)
| | - Ji-Gang Piao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (X.X.); (T.Y.); (W.G.); (W.C.); (L.H.); (W.R.)
| |
Collapse
|
4
|
Zhang W, Taheri-Ledari R, Ganjali F, Mirmohammadi SS, Qazi FS, Saeidirad M, KashtiAray A, Zarei-Shokat S, Tian Y, Maleki A. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: a review. RSC Adv 2022; 13:80-114. [PMID: 36605676 PMCID: PMC9764328 DOI: 10.1039/d2ra06888e] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
In the field of targeted drug delivery, the effects of size and morphology of drug nanocarriers are of great importance and need to be discussed in depth. To be concise, among all the various shapes of nanocarriers, rods and tubes with a narrow cross-section are the most preferred shapes for the penetration of a cell membrane. In this regard, several studies have focused on methods to produce nanorods and nanotubes with controlled optimized size and aspect ratio (AR). Additionally, a non-spherical orientation could affect the cellular uptake process while a tangent angle of less than 45° is better at penetrating the membrane, and Ω = 90° is beneficial. Moreover, these nanocarriers show different behaviors when confronting diverse cells whose fields should be investigated in future studies. In this survey, a comprehensive classification based on carrier shape is first submitted. Then, the most commonly used methods for control over the size and shape of the carriers are reviewed. Finally, influential factors on the cellular uptake and internalization processes and related analytical methods for evaluating this process are discussed.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Nuclear Medicine, West China Hospital, Sichuan University No. 37, Guoxue Alley Chengdu 610041 Sichuan Province P. R. China
| | - Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Seyedeh Shadi Mirmohammadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Fateme Sadat Qazi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Mahdi Saeidirad
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Amir KashtiAray
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Simindokht Zarei-Shokat
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| | - Ye Tian
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University No. 14, 3rd Section of South Renmin Road Chengdu 610041 P. R. China
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98 21 73021584 +98 21 77240640-50
| |
Collapse
|
5
|
Zhang G, Han S, Wang L, Yao Y, Chen K, Chen S. A Ternary Synergistic eNOS Gene Delivery System Based on Calcium Ion and L-Arginine for Accelerating Angiogenesis by Maximizing NO Production. Int J Nanomedicine 2022; 17:1987-2000. [PMID: 35530975 PMCID: PMC9075900 DOI: 10.2147/ijn.s363168] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to construct a delivery system based on L-arginine-modified calcium phosphate (CaP) to load eNOS plasmids (peNOS), which could amply nitric oxide (NO) to repair endothelial damage, promote angiogenic activities and alleviate inflammation. Methods pDNA-loaded CaP nanocomplex (CaP/pDNA) were prepared by co-precipitation method, subsequently modified by L-arginine. The gene transfection efficiency, pro-angiogenic and anti-inflammatory ability were investigated in vivo and in vitro. The therapeutic effect on ischemic hindlimb in vivo was assessed. Results L-arginine modification augmented the transfection efficiency of CaP/peNOS to elevate the eNOS expression, and then served as NO substrate catalyzed by eNOS. At the same time, calcium ions produced by degradation of CaP carriers enhanced the activity of eNOS. In vitro experiments, the loading capability and transfection performance of R(L)-CaP were confirmed to be superior to that of CaP. Additionally, HUVECs treated with R(L)-CaP/peNOS showed the strongest NO release, cell migration, tube formation and the lowest inflammatory levels compared to the CaP/peNOS and R(D)-CaP/peNOS groups. We also demonstrated the advantages of R(L)-CaP/peNOS in increasing blood reperfusion in hindlimb ischemia mice by accelerating angiogenesis and reducing inflammation, which can be attributed to the highest eNOS-derived NO production. Conclusion The combination strategy of peNOS transfection, L-arginine supplement and calcium ions addition is a promising therapeutic approach for certain vascular diseases, based on the synergistic NO production.
Collapse
Affiliation(s)
- Guiming Zhang
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
- Correspondence: Guiming Zhang, Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China, Email
| | - Shangcong Han
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, People’s Republic of China
| | - Lisheng Wang
- Department of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Yu Yao
- Department of Urology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, People’s Republic of China
| | - Kai Chen
- Department of Clinical Research, Characteristic Medical Center of Chinese People’s Armed Police Force, Tianjin, 300162, People’s Republic of China
| | - Si Chen
- Department of Anesthesiology, the 991th Hospital of PLA, Xiangyang, 441000, People’s Republic of China
| |
Collapse
|
6
|
Meng Q, Zhong S, He S, Gao Y, Cui X. Synthesis and characterization of curcumin-loaded pH/reduction dual-responsive folic acid modified carboxymethyl cellulose-based microcapsules for targeted drug delivery. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
EL-Ghoul Y, Alminderej FM, Alsubaie FM, Alrasheed R, Almousa NH. Recent Advances in Functional Polymer Materials for Energy, Water, and Biomedical Applications: A Review. Polymers (Basel) 2021; 13:4327. [PMID: 34960878 PMCID: PMC8708011 DOI: 10.3390/polym13244327] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023] Open
Abstract
Academic research regarding polymeric materials has been of great interest. Likewise, polymer industries are considered as the most familiar petrochemical industries. Despite the valuable and continuous advancements in various polymeric material technologies over the last century, many varieties and advances related to the field of polymer science and engineering still promise a great potential for exciting new applications. Research, development, and industrial support have been the key factors behind the great progress in the field of polymer applications. This work provides insight into the recent energy applications of polymers, including energy storage and production. The study of polymeric materials in the field of enhanced oil recovery and water treatment technologies will be presented and evaluated. In addition, in this review, we wish to emphasize the great importance of various functional polymers as effective adsorbents of organic pollutants from industrial wastewater. Furthermore, recent advances in biomedical applications are reviewed and discussed.
Collapse
Affiliation(s)
- Yassine EL-Ghoul
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
- Textile Engineering Laboratory, University of Monastir, Monastir 5019, Tunisia
| | - Fahad M. Alminderej
- Department of Chemistry, College of Science, Qassim University, King Abdulaziz Rd, P.O. Box 1162, Buraidah 51452, Saudi Arabia
| | - Fehaid M. Alsubaie
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Radwan Alrasheed
- National Center for Desalination & Water Treatment Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| | - Norah H. Almousa
- National Center for Chemical Catalysis Technology, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia;
| |
Collapse
|
8
|
Sun Y, Liu Y, Ma X, Hu H. The Influence of Cell Cycle Regulation on Chemotherapy. Int J Mol Sci 2021; 22:6923. [PMID: 34203270 PMCID: PMC8267727 DOI: 10.3390/ijms22136923] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Cell cycle regulation is orchestrated by a complex network of interactions between proteins, enzymes, cytokines, and cell cycle signaling pathways, and is vital for cell proliferation, growth, and repair. The occurrence, development, and metastasis of tumors are closely related to the cell cycle. Cell cycle regulation can be synergistic with chemotherapy in two aspects: inhibition or promotion. The sensitivity of tumor cells to chemotherapeutic drugs can be improved with the cooperation of cell cycle regulation strategies. This review presented the mechanism of the commonly used chemotherapeutic drugs and the effect of the cell cycle on tumorigenesis and development, and the interaction between chemotherapy and cell cycle regulation in cancer treatment was briefly introduced. The current collaborative strategies of chemotherapy and cell cycle regulation are discussed in detail. Finally, we outline the challenges and perspectives about the improvement of combination strategies for cancer therapy.
Collapse
Affiliation(s)
- Ying Sun
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.S.); (Y.L.)
| | - Yang Liu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.S.); (Y.L.)
| | - Xiaoli Ma
- Qingdao Institute of Measurement Technology, Qingdao 266000, China;
| | - Hao Hu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (Y.S.); (Y.L.)
| |
Collapse
|