1
|
Wu X, Koch M, Martínez FPP, Schirhagl R, Włodarczyk‐Biegun MK. Quantum Sensing Unravels Antioxidant Efficacy Within PCL/Matrigel Skin Equivalents. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403729. [PMID: 39246220 PMCID: PMC11618742 DOI: 10.1002/smll.202403729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/27/2024] [Indexed: 09/10/2024]
Abstract
Skin equivalents (SE) that recapitulate biological and mechanical characteristics of the native tissue are promising platforms for assessing cosmetics and studying fundamental biological processes. Methods to achieve SEs with well-organized structure, and ideal biological and mechanical properties are limited. Here, the combination of melt electrowritten PCL scaffolds and cell-laden Matrigel to fabricate SE is described. The PCL scaffold provides ideal structural and mechanical properties, preventing deformation of the model. The model consists of a top layer for seeding keratinocytes to mimic the epidermis, and a bottom layer of Matrigel-based dermal compartment with fibroblasts. The compressive modulus and the biological properties after 3-day coculture indicate a close resemblance with the native skin. Using the SE, a testing system to study the damage caused by UVA irradiation and evaluate antioxidant efficacy is established. The effectiveness of Tea polyphenols (TPs) and L-ascorbic acid (Laa) is compared based on free radical generation. TPs are demonstrated to be more effective in downregulating free radical generation. Further, T1 relaxometry is used to detect the generation of free radicals at a single-cell level, which allows tracking of the same cell before and after UVA treatment.
Collapse
Affiliation(s)
- Xixi Wu
- Department of Biomedical EngineeringUniversity Medical Centre Groningen and University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Marcus Koch
- INM – Leibniz Institute for New MaterialsCampus D2 266123SaarbrueckenGermany
| | - Felipe P. Perona Martínez
- Department of Biomedical EngineeringUniversity Medical Centre Groningen and University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Romana Schirhagl
- Department of Biomedical EngineeringUniversity Medical Centre Groningen and University of GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Małgorzata K. Włodarczyk‐Biegun
- Polymer ScienceZernike Institute for Advanced MaterialsUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
- Biotechnology CentreThe Silesian University of TechnologyKrzywoustego 8Gliwice44‐100Poland
| |
Collapse
|
2
|
Zhang Y, Sigaeva A, Fan S, Norouzi N, Zheng X, Heijink IH, Slebos DJ, Pouwels SD, Schirhagl R. Dynamics for High-Sensitivity Detection of Free Radicals in Primary Bronchial Epithelial Cells upon Stimulation with Cigarette Smoke Extract. NANO LETTERS 2024; 24:9650-9657. [PMID: 39012318 PMCID: PMC11311533 DOI: 10.1021/acs.nanolett.4c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024]
Abstract
Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is caused by chronic exposure to toxic particles and gases, such as cigarette smoke. Free radicals, which are produced during a stress response to toxic particles, play a crucial role in disease progression. Measuring these radicals is difficult since the complex mixture of chemicals within cigarette smoke interferes with radical detection. We used a new quantum sensing technique called relaxometry to measure free radicals with nanoscale resolution on cells from COPD patients and healthy controls exposed to cigarette smoke extract (CSE) or control medium. Epithelial cells from COPD patients display a higher free radical load than those from healthy donors and are more vulnerable to CSE. We show that epithelial cells of COPD patients are more susceptible to the damaging effects of cigarette smoke, leading to increased release of free radicals.
Collapse
Affiliation(s)
- Y. Zhang
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - A. Sigaeva
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - S. Fan
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - N. Norouzi
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - X. Zheng
- Department
of Pathology and Medical Biology, University
of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - I. H. Heijink
- Department
of Pathology and Medical Biology, University
of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Groningen
Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - D. J. Slebos
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Groningen
Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - S. D. Pouwels
- Department
of Pathology and Medical Biology, University
of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Department
of Pulmonology, University of Groningen,
University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
- Groningen
Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands
| | - R. Schirhagl
- Department
of Biomaterials and Biotechnology, University
of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
3
|
Tegafaw T, Liu S, Ahmad MY, Ali Al Saidi AK, Zhao D, Liu Y, Yue H, Nam SW, Chang Y, Lee GH. Production, surface modification, physicochemical properties, biocompatibility, and bioimaging applications of nanodiamonds. RSC Adv 2023; 13:32381-32397. [PMID: 37928839 PMCID: PMC10623544 DOI: 10.1039/d3ra06837d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
Nanodiamonds (ND) are chemically inert and stable owing to their sp3 covalent bonding structure, but their surface sp2 graphitic carbons can be easily homogenized with diverse functional groups via oxidation, reduction, hydrogenation, amination, and halogenation. Further surface conjugation of NDs with hydrophilic ligands can boost their colloidal stability and functionality. In addition, NDs are non-toxic as they are made of carbons. They exhibit stable fluorescence without photobleaching. They also possess paramagnetic and ferromagnetic properties, making them suitable for use as a new type of fluorescence imaging (FI) and magnetic resonance imaging (MRI) probe. In this review, we focused on recently developed ND production methods, surface homogenization and functionalization methods, biocompatibilities, and biomedical imaging applications as FI and MRI probes. Finally, we discussed future perspectives.
Collapse
Affiliation(s)
- Tirusew Tegafaw
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Shuwen Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Mohammad Yaseen Ahmad
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Abdullah Khamis Ali Al Saidi
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Dejun Zhao
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Ying Liu
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Huan Yue
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| | - Sung-Wook Nam
- Department of Molecular Medicine, School of Medicine, Kyungpook National University Taegu 41944 South Korea +82-53-420-5471
| | - Yongmin Chang
- Department of Molecular Medicine, School of Medicine, Kyungpook National University Taegu 41944 South Korea +82-53-420-5471
| | - Gang Ho Lee
- Department of Chemistry, College of Natural Sciences, Kyungpook National University Taegu 41566 South Korea +82-53-950-6330 +82-53-950-5340
| |
Collapse
|
4
|
Vo D, You T, Lin Y, Angela S, Le, T, Hsiao W. Toxicity Assessments of Nanodiamonds. NANODIAMONDS IN ANALYTICAL AND BIOLOGICAL SCIENCES 2023:73-94. [DOI: 10.1002/9781394202164.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
|
5
|
Abate M, Lombardi A, Luce A, Porru M, Leonetti C, Bocchetti M, Campani V, De Rosa G, Graziano SF, Nele V, Cardile F, Marino FZ, Franco R, Ronchi A, Scrima M, Sperlongano R, Alfano R, Misso G, Amler E, Caraglia M, Zappavigna S. Fluorescent nanodiamonds as innovative delivery systems for MiR-34a replacement in breast cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:127-141. [PMID: 37449042 PMCID: PMC10336355 DOI: 10.1016/j.omtn.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Nanodiamonds are innovative nanocrystalline carbon particles able to deliver chemically conjugated miRNAs. In oncology, the use of miRNA-based therapies may represent an advantage, based on their ability to simultaneously target multiple intracellular oncogenic targets. Here, nanodiamonds were tested and optimized to deliver miR-34a, a miRNA playing a key role in inhibiting tumor development and progression in many cancers. The physical-chemical properties of nanodiamonds were investigated suggesting electrical stability and uniformity of structure and size. Moreover, we evaluated nanodiamond cytotoxicity on two breast cancer cell models and confirmed their excellent biocompatibility. Subsequently, nanodiamonds were conjugated with miR-34a, using the chemical crosslinker polyethyleneimine; real-time PCR analysis revealed a higher level of miR-34a in cancer cells treated with the different formulations of nanodiamonds than with commercial transfectant. A significant and early nanodiamond-miR-34a uptake was recorded by FACS and fluorescence microscopy analysis in MCF7 and MDA-MB-231 cells. Moreover, nanodiamond-miR-34a significantly inhibited both cell proliferation and migration. Finally, a remarkable anti-tumor effect of miR-34a-conjugated nanodiamonds was observed in both heterotopic and orthotopic murine xenograft models. In conclusion, this study provides a rationale for the development of new therapeutic strategies based on use of miR-34a delivered by nanodiamonds to improve the clinical treatment of neoplasms.
Collapse
Affiliation(s)
- Marianna Abate
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
| | - Manuela Porru
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, E Chianesi 53, 00144 Rome, Italy
| | - Carlo Leonetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, E Chianesi 53, 00144 Rome, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Virginia Campani
- Department of Pharmacy, University of Naples Federico II, D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, D. Montesano 49, 80131 Naples, Italy
| | - Sossio Fabio Graziano
- Department of Pharmacy, University of Naples Federico II, D. Montesano 49, 80131 Naples, Italy
| | - Valeria Nele
- Department of Pharmacy, University of Naples Federico II, D. Montesano 49, 80131 Naples, Italy
| | - Francesco Cardile
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Federica Zito Marino
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania “Luigi Vanvitelli,” 80138 Naples, Italy
| | - Renato Franco
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania “Luigi Vanvitelli,” 80138 Naples, Italy
| | - Andrea Ronchi
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania “Luigi Vanvitelli,” 80138 Naples, Italy
| | - Marianna Scrima
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Rossella Sperlongano
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences “DAMSS,” University of Campania “Luigi Vanvitelli,” Via S. M. di Costantinopoli 104, 80138 Naples, Italy
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
| | - Evzen Amler
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
6
|
Li R, Vedelaar TA, Sigaeva A, Zhang Y, Wu K, Wang H, Wu X, Olinga P, Wlodarzyk-Biegun M, Schirhagl R. Fluorescent Nanodiamonds for Tracking Single Polymer Particles in Cells and Tissues. Anal Chem 2023; 95:13046-13054. [PMID: 37612789 PMCID: PMC10483464 DOI: 10.1021/acs.analchem.3c01452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Polymer nanoparticles are widely used in drug delivery and are also a potential concern due to the increased burden of nano- or microplastics in the environment. In order to use polymer nanoparticles safely and understand their mechanism of action, it is useful to know where within cells and tissues they end up. To this end, we labeled polymer nanoparticles with nanodiamond particles. More specifically, we have embedded nanodiamond particles in the polymer particles and characterized the composites. Compared to conventional fluorescent dyes, these labels have the advantage that nanodiamonds do not bleach or blink, thus allowing long-term imaging and tracking of polymer particles. We have demonstrated this principle both in cells and entire liver tissues.
Collapse
Affiliation(s)
- Runrun Li
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Thea A. Vedelaar
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Alina Sigaeva
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Yue Zhang
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Kaiqi Wu
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Hui Wang
- Zernike
Institute for Advanced Materials, Groningen
University, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Xixi Wu
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
- Zernike
Institute for Advanced Materials, Groningen
University, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Peter Olinga
- Department
of Pharmaceutical Technology and Biopharmacy, Groningen University, University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| | - Małgorzata
K. Wlodarzyk-Biegun
- Zernike
Institute for Advanced Materials, Groningen
University, Nijenborgh
4, 9747 AG Groningen, The Netherlands
- Biotechnology
Centre, The Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Romana Schirhagl
- Department
of Biomedical Engineering, Groningen University,
University Medical Center Groningen, Antonius Deusinglaan 1, 9713AV Groningen, The Netherlands
| |
Collapse
|
7
|
Fujiwara M. Diamond quantum sensors in microfluidics technology. BIOMICROFLUIDICS 2023; 17:054107. [PMID: 37854889 PMCID: PMC10581739 DOI: 10.1063/5.0172795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Diamond quantum sensing is an emerging technology for probing multiple physico-chemical parameters in the nano- to micro-scale dimensions within diverse chemical and biological contexts. Integrating these sensors into microfluidic devices enables the precise quantification and analysis of small sample volumes in microscale channels. In this Perspective, we present recent advancements in the integration of diamond quantum sensors with microfluidic devices and explore their prospects with a focus on forthcoming technological developments.
Collapse
Affiliation(s)
- Masazumi Fujiwara
- Department of Chemistry, Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1, Tsushimanaka, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| |
Collapse
|
8
|
Zhao Y, Jalili S. Dextran, as a biological macromolecule for the development of bioactive wound dressing materials: A review of recent progress and future perspectives. Int J Biol Macromol 2022; 207:666-682. [PMID: 35218804 DOI: 10.1016/j.ijbiomac.2022.02.114] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 12/14/2022]
Abstract
Skin is the largest organ in the body which plays different roles in maintaining hemostasis. Although this tissue has a high healing potential, severe skin wounds cannot heal without external interventions. Among various treatment strategies, tissue-engineered wound dressings have gained significant attention. In this regard, tremendous progress has been made in the field of tissue engineering to develop constructs with higher healing activities. Material selection and optimization are key factors in development of such dressings. Among different candidates, dextran-based wound dressings have been extensively studied. Dextran is a branched biological macromolecule which is composed of anhydroglucose monomers. Due to its excellent biocompatibility, biodegradability, non-toxicity, modifiable functional groups, and proven clinical safety, dextran has found application in wound healing research. In the current review, applications, challenges, and future perspectives of dextran-based wound dressings will be discussed.
Collapse
Affiliation(s)
- Yunfeng Zhao
- Analysis and Testing Center, Yancheng Institute of Technology, Yancheng 224051, Jiangsu, China.
| | - Saman Jalili
- Department of Biomaterials Science and Technology, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
9
|
Mansuriya BD, Altintas Z. Carbon Dots: Classification, Properties, Synthesis, Characterization, and Applications in Health Care-An Updated Review (2018-2021). NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2525. [PMID: 34684966 PMCID: PMC8541690 DOI: 10.3390/nano11102525] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) are usually smaller than 10 nm in size, and are meticulously formulated and recently introduced nanomaterials, among the other types of carbon-based nanomaterials. They have gained significant attention and an incredible interest in the field of nanotechnology and biomedical science, which is merely due to their considerable and exclusive attributes; including their enhanced electron transferability, photobleaching and photo-blinking effects, high photoluminescent quantum yield, fluorescence property, resistance to photo-decomposition, increased electrocatalytic activity, good aqueous solubility, excellent biocompatibility, long-term chemical stability, cost-effectiveness, negligible toxicity, and acquaintance of large effective surface area-to-volume ratio. CDs can be readily functionalized owing to the abundant functional groups on their surfaces, and they also exhibit remarkable sensing features such as specific, selective, and multiplex detectability. In addition, the physico-chemical characteristics of CDs can be easily tunable based on their intended usage or application. In this comprehensive review article, we mainly discuss the classification of CDs, their ideal properties, their general synthesis approaches, and primary characterization techniques. More importantly, we update the readers about the recent trends of CDs in health care applications (viz., their substantial and prominent role in the area of electrochemical and optical biosensing, bioimaging, drug/gene delivery, as well as in photodynamic/photothermal therapy).
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Institute of Chemistry, Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|