1
|
Nair CR, Sreejalekshmi K. Building synergistic nanoplatforms via dendrimer-small organic molecule handshakes: Heterocycle ligation as a promising strategy. MATERIALS TODAY CHEMISTRY 2024; 38:102099. [DOI: 10.1016/j.mtchem.2024.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Gu ZT, Tzeng CH, Chien HJ, Chen CC, Lai LL. Dendrimers with Tetraphenylmethane Moiety as a Central Core: Synthesis, a Pore Study and the Adsorption of Volatile Organic Compounds. Int J Mol Sci 2022; 23:ijms231911155. [PMID: 36232460 PMCID: PMC9570496 DOI: 10.3390/ijms231911155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
Reasonable yields of two dendrimers with central tetraphenylmethane and peripheral 3,5-di-(tert-butanoylamino)benzoylpiperazine moieties are prepared. These dendrimers have a void space in the solid state so they adsorb guest molecules. Their BET values vary, depending on the H-bond interaction between the peripheral moiety and the gas molecules, and the dendritic framework that fabricates the void space is flexible. In the presence of polar gas molecules such as CO2, the BET increases significantly and is about 4–8 times the BET under N2. One dendrimer adsorbs cyanobenzene to a level of 436 mg/g, which, to the authors’ best knowledge, is almost equivalent to the highest reported value in the literature.
Collapse
Affiliation(s)
- Zi-Ting Gu
- Department of Applied Chemistry, National Chi Nan University, No. 1 University Rd., Puli, Nantou 54561, Taiwan
| | - Chung-Hao Tzeng
- Department of Applied Chemistry, National Chi Nan University, No. 1 University Rd., Puli, Nantou 54561, Taiwan
| | - Hung-Jui Chien
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan
| | - Chun-Chi Chen
- Department of Environmental Engineering and Science, Feng Chia University, Taichung 40724, Taiwan
| | - Long-Li Lai
- Department of Applied Chemistry, National Chi Nan University, No. 1 University Rd., Puli, Nantou 54561, Taiwan
- Correspondence: ; Tel.: +886-49-2910960 (ext. 4976)
| |
Collapse
|
3
|
Safety Challenges and Application Strategies for the Use of Dendrimers in Medicine. Pharmaceutics 2022; 14:pharmaceutics14061292. [PMID: 35745863 PMCID: PMC9230513 DOI: 10.3390/pharmaceutics14061292] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Dendrimers are used for a variety of applications in medicine but, due to their host–guest and entrapment characteristics, are particularly used for the delivery of genes and drugs. However, dendrimers are intrinsically toxic, thus creating a major limitation for their use in biological systems. To reduce such toxicity, biocompatible dendrimers have been designed and synthesized, and surface engineering has been used to create advantageous changes at the periphery of dendrimers. Although dendrimers have been reviewed previously in the literature, there has yet to be a systematic and comprehensive review of the harmful effects of dendrimers. In this review, we describe the routes of dendrimer exposure and their distribution in vivo. Then, we discuss the toxicity of dendrimers at the organ, cellular, and sub-cellular levels. In this review, we also describe how technology can be used to reduce dendrimer toxicity, by changing their size and surface functionalization, how dendrimers can be combined with other materials to generate a composite formulation, and how dendrimers can be used for the diagnosis of disease. Finally, we discuss future challenges, developments, and research directions in developing biocompatible and safe dendrimers for medical purposes.
Collapse
|
4
|
Lu YC, Hsu YT, Yang TY, Liou IC, Wang SW, Huang PC, Lee JJ, Lai LL, Hsu HF. Converting non-Mesogenic to Mesogenic Stacking of Amino- s-Triazine-Based Dendrons with p-CN Phenyl Unit by Eliminating Peripheral Dipole. NANOMATERIALS 2022; 12:nano12020185. [PMID: 35055204 PMCID: PMC8782037 DOI: 10.3390/nano12020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 12/04/2022]
Abstract
Three new amino-s-triazine-based dendrons, 1a, 1b, and 1c, containing an aryl-CN moiety in the dendritic skeleton were prepared in 72–81% yields (1a: R1 = − N(n-C8H17)2, R2 = n-OC8H17, 1b: R1 = R2 = − N(n-C8H17)2, 1c: R1 = − N(n-C8H17)2, R2 = − N(n-C4H9)2). Dendrons 1a with N(n-C8H17)2 and n-OC8H17 peripheral substituents, surprisingly, did not show any mesogenic phase during the thermal process. However, non-mesogenic 1a can be converted to mesogenic 1b or 1c by eliminating the peripheral dipole arising from the alkoxy substituent; dendron 1b only comprising the same N(n-C8H17)2 peripheral groups showed a ~25 °C mesogenic range on heating and ~108 °C mesogenic range on cooling. In contrast, dendron 1c possessing different N(n-CmH2m+1)2 (m = 8 versus m = 4) peripheral units, having similar stacking as 1b, exhibited a columnar phase on thermal treatment, but its mesogenic range (~9 and ~66 °C on heating and cooling, respectively) was much narrower than that of 1b, attributed to 1c’s less flexible alkyl chains in the peripheral part of dendron. Dendron 1a with the alkoxy substituent in the peripheral skeleton, creating additional dipole correspondingly, thus, leads to the dendritic molecules having a non-mesogenic stacking. Without the peripheral dipole for intermolecular side-by-side interaction, dendrons 1b and 1c exhibit a columnar phase on thermal treatment because of the vibration from the peripheral alkyl chain.
Collapse
Affiliation(s)
- Yao-Chih Lu
- Department of Applied Chemistry, National Chi Nan University, No. 1 University Rd., Puli, Nantou 545, Taiwan; (Y.-C.L.); (T.-Y.Y.); (I.-C.L.); (S.-W.W.)
| | - Yu-Tsz Hsu
- Department of Chemistry, Tamkang University, No. 151, Yingzhuan Rd., New Taipei City 251, Taiwan;
| | - Tsung-Yen Yang
- Department of Applied Chemistry, National Chi Nan University, No. 1 University Rd., Puli, Nantou 545, Taiwan; (Y.-C.L.); (T.-Y.Y.); (I.-C.L.); (S.-W.W.)
| | - I-Chun Liou
- Department of Applied Chemistry, National Chi Nan University, No. 1 University Rd., Puli, Nantou 545, Taiwan; (Y.-C.L.); (T.-Y.Y.); (I.-C.L.); (S.-W.W.)
| | - Sheng-Wei Wang
- Department of Applied Chemistry, National Chi Nan University, No. 1 University Rd., Puli, Nantou 545, Taiwan; (Y.-C.L.); (T.-Y.Y.); (I.-C.L.); (S.-W.W.)
| | - Po-Chia Huang
- National Synchrotron Radiation Research Center, No. 101, Hsin-Ann Rd., Hsinchu 300, Taiwan; (P.-C.H.); (J.-J.L.)
| | - Jey-Jau Lee
- National Synchrotron Radiation Research Center, No. 101, Hsin-Ann Rd., Hsinchu 300, Taiwan; (P.-C.H.); (J.-J.L.)
| | - Long-Li Lai
- Department of Applied Chemistry, National Chi Nan University, No. 1 University Rd., Puli, Nantou 545, Taiwan; (Y.-C.L.); (T.-Y.Y.); (I.-C.L.); (S.-W.W.)
- Correspondence: (L.-L.L.); (H.-F.H.)
| | - Hsiu-Fu Hsu
- Department of Chemistry, Tamkang University, No. 151, Yingzhuan Rd., New Taipei City 251, Taiwan;
- Correspondence: (L.-L.L.); (H.-F.H.)
| |
Collapse
|