1
|
Marcos-Carrillo MDP, Checca-Huaman NR, Passamani EC, Ramos-Guivar JA. Biosynthesis and Characterization of Iron Oxide Nanoparticles Using Chenopodium quinoa Extract. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1607. [PMID: 39404334 PMCID: PMC11478423 DOI: 10.3390/nano14191607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
In this study, we achieved the biosynthesis of novel 7-8 nm iron-oxide nanoparticles in the presence of different concentrations (5 to 50% w/v) of commercial white quinoa extract. Initially, quinoa extract was prepared at various concentrations by a purification route. The biosynthesis optimization was systematically monitored by X-ray diffraction, and the Rietveld quantitative analysis showed the presence of goethite (5 to 10 wt.%) and maghemite phases. The first phase disappeared upon increasing the organic loading (40 and 50% w/v). The organic loading was corroborated by thermogravimetric measurements, and it increased with quinoa extract concentration. Its use reduces the amount of precipitation agent at high quinoa extract concentrations with the formation of magnetic nanoparticles with hard ferrimagnetic character (42 and 11 emu g-1). The enrichment of hydroxyl groups and the negative zeta potential above pH = 7 were corroborated by a reduction in the point of zero charge in all the samples. For alkaline values, the zeta potential values were above the stability range, indicating highly stable chemical species. The evidence of hydroxyl and amide functionalization was qualitatively observed using infrared analysis, which showed that the carboxyl (quercetin/kaempferol), amide I, and amide III chemical groups are retained after biosynthesis. The resultant biosynthesized samples can find applications in environmental remediation due to the affinity of the chemical agents present on the particle surfaces and easy-to-handle them magnetically.
Collapse
Affiliation(s)
- Mercedes del Pilar Marcos-Carrillo
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru;
| | - Noemi-Raquel Checca-Huaman
- Centro Brasileiro de Pesquisas Físicas (CBPF), R. Xavier Sigaud, 150, Urca, Rio de Janeiro 22290-180, Brazil;
| | - Edson C. Passamani
- Departamento de Física, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Bairro Goiabeira, Vitoria 29075-910, Brazil;
| | - Juan A. Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru;
| |
Collapse
|
2
|
Valério A, Trindade FJ, Penacchio RFS, Cisi B, Damasceno S, Estradiote MB, Rodella CB, Ferlauto AS, Kycia SW, Morelhão SL. Implications of size dispersion on X-ray scattering of crystalline nanoparticles: CeO 2 as a case study. J Appl Crystallogr 2024; 57:793-807. [PMID: 38846767 PMCID: PMC11151675 DOI: 10.1107/s1600576724003108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 04/10/2024] [Indexed: 06/09/2024] Open
Abstract
Controlling the shape and size dispersivity and crystallinity of nanoparticles (NPs) has been a challenge in identifying these parameters' role in the physical and chemical properties of NPs. The need for reliable quantitative tools for analyzing the dispersivity and crystallinity of NPs is a considerable problem in optimizing scalable synthesis routes capable of controlling NP properties. The most common tools are electron microscopy (EM) and X-ray scattering techniques. However, each technique has different susceptibility to these parameters, implying that more than one technique is necessary to characterize NP systems with maximum reliability. Wide-angle X-ray scattering (WAXS) is mandatory to access information on crystallinity. In contrast, EM or small-angle X-ray scattering (SAXS) is required to access information on whole NP sizes. EM provides average values on relatively small ensembles in contrast to the bulk values accessed by X-ray techniques. Besides the fact that the SAXS and WAXS techniques have different susceptibilities to size distributions, SAXS is easily affected by NP-NP interaction distances. Because of all the variables involved, there have yet to be proposed methodologies for cross-analyzing data from two techniques that can provide reliable quantitative results of dispersivity and crystallinity. In this work, a SAXS/WAXS-based methodology is proposed for simultaneously quantifying size distribution and degree of crystallinity of NPs. The most reliable easy-to-access size result for each technique is demonstrated by computer simulation. Strategies on how to compare these results and how to identify NP-NP interaction effects underneath the SAXS intensity curve are presented. Experimental results are shown for cubic-like CeO2 NPs. WAXS size results from two analytical procedures are compared, line-profile fitting of individual diffraction peaks in opposition to whole pattern fitting. The impact of shape dispersivity is also evaluated. Extension of the proposed methodology for cross-analyzing EM and WAXS data is possible.
Collapse
Affiliation(s)
- Adriana Valério
- Institute of Physics, University of São Paulo, São Paulo, Brazil
| | - Fabiane J. Trindade
- Laboratory of Materials for Energy, Engineering, Modelling and Applied Social Sciences Center, Federal University of ABC, Santo André, São Paulo, Brazil
| | | | - Bria Cisi
- Laboratory of Materials for Energy, Engineering, Modelling and Applied Social Sciences Center, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Sérgio Damasceno
- Laboratory of Materials for Energy, Engineering, Modelling and Applied Social Sciences Center, Federal University of ABC, Santo André, São Paulo, Brazil
| | | | - Cristiane B. Rodella
- Brazilian Synchrotron Light Laboratory – SIRIUS/CNPEM, Campinas, São Paulo, Brazil
| | - Andre S. Ferlauto
- Laboratory of Materials for Energy, Engineering, Modelling and Applied Social Sciences Center, Federal University of ABC, Santo André, São Paulo, Brazil
| | - Stefan W. Kycia
- Department of Physics, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
3
|
Kawsar M, Sahadat Hossain M, Tabassum S, Bahadur NM, Ahmed S. Synthesis of different types of nano-hydroxyapatites for efficient photocatalytic degradation of textile dye (Congo red): a crystallographic characterization. RSC Adv 2024; 14:11570-11583. [PMID: 38628663 PMCID: PMC11019944 DOI: 10.1039/d3ra08527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/30/2024] [Indexed: 04/19/2024] Open
Abstract
The textile industry, a vital economic force in developing nations, faces significant challenges including the release of undesired dye effluents, posing potential health and environmental risks which need to be minimized with the aid of sustainable materials. This study focuses on the photocatalytic potential of hydroxyapatite together with different dopants like titanium-di-oxide (TiO2) and zinc oxide (ZnO). Here, we synthesized hydroxyapatite (HAp) using different calcium sources (calcium hydroxide, calcium carbonate) and phosphorous sources (phosphoric acid, diammonium hydrogen phosphate) precursors through a wet chemical precipitation technique. Pure and doped HAp were characterized via different technologies, which consist of X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), as well as UV-vis spectroscopy. The effectiveness of the synthesized photocatalyst was evaluated by its interactivity with synthetic azo dyes (Congo red). The photodegradation of Ca(OH)2_HAp, CaCO3_HAp, ZnO-doped HAp as well as TiO2-doped HAp, were obtained as 89%, 91%, 86%, and 91%, respectively. Furthermore, at neutral pH, TiO2-doped HAp shows the highest degradation (86%), whereas ZnO-doped HAp possesses the lowest degradation (73%). Additionally, various XRD models (Monshi-Scherrer's, Williamson-Hall, and Halder-Wagner methods) were employed to study crystallite dimension.
Collapse
Affiliation(s)
- Md Kawsar
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Md Sahadat Hossain
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| | - Sumaya Tabassum
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Samina Ahmed
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
- BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| |
Collapse
|
4
|
Kawsar M, Hossain MS, Bahadur NM, Ahmed S. Synthesis of nano-crystallite hydroxyapatites in different media and a comparative study for estimation of crystallite size using Scherrer method, Halder-Wagner method size-strain plot, and Williamson-Hall model. Heliyon 2024; 10:e25347. [PMID: 38327405 PMCID: PMC10847954 DOI: 10.1016/j.heliyon.2024.e25347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/10/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Hydroxyapatite (HAp) [Ca10(PO4)6(OH)2] is remarkably similar to the hard tissue of the human body and the uses of this material in various fields in addition to the medical sector are increasing day by day. In this research, mustered oil, soybean oil, as well as coconut oil were employed as liquid media for synthesizing nanocrystalline HAp using a wet chemical precipitation approach. The X-ray diffraction (XRD) study verified the crystalline phase of the HAp in all the indicated media and discovered similarities with the standard database. Several prominent models such as the Scherrer's Method (SM), Halder-Wagner Method (HWM), linear straight-line method (LSLM), Williamson-Hall Method (W-M), Monshi Scherrer Method (MSM), Size-Strain Plot Method (SSPM), Sahadat-Scherrer Method (S-S) were applied for the determination of crystallite size. The stress, strain, and energy density were also computed from the above models. All the models, without the Linear straight-line technique of Scherrer's equation, resulted in an appropriate value of crystallite size for synthesized products. The calculated crystallite sizes were 6.5 nm for HAp in master oil using Halder-Wagner Method, and 143 nm for HAp in coconut oil using the Scherrer equation which were the lowest and the largest, respectively.
Collapse
Affiliation(s)
- Md. Kawsar
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Sahadat Hossain
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Samina Ahmed
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
- BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka-1205, Bangladesh
| |
Collapse
|
5
|
Naaz T, Kumari S, Sharma K, Singh V, Khan AA, Pandit S, Priya K, Jadhav DA. Bioremediation of hydrocarbon by co-culturing of biosurfactant-producing bacteria in microbial fuel cell with Fe 2O 3-modified anode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119768. [PMID: 38100858 DOI: 10.1016/j.jenvman.2023.119768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/13/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The most common type of environmental contamination is petroleum hydrocarbons. Sustainable and environmentally friendly treatment strategies must be explored in light of the increasing challenges of toxic and critical wastewater contamination. This paper deals with the bacteria-producing biosurfactant and their employment in the bioremediation of hydrocarbon-containing waste through a microbial fuel cell (MFC) with Pseudomonas aeruginosa (exoelectrogen) as co-culture for simultaneous power generation. Staphylococcus aureus is isolated from hydrocarbon-contaminated soil and is effective in hydrocarbon degradation by utilizing hydrocarbon (engine oil) as the only carbon source. The biosurfactant was purified using silica-gel column chromatography and characterised through FTIR and GCMS, which showed its glycolipid nature. The isolated strains are later employed in the MFCs for the degradation of the hydrocarbon and power production simultaneously which has shown a power density of 6.4 W/m3 with a 93% engine oil degradation rate. A biogenic Fe2O3 nanoparticle (NP) was synthesized using Bambusa arundinacea shoot extract for anode modification. It increased the power output by 37% and gave the power density of 10.2 W/m3. Thus, simultaneous hydrocarbon bioremediation from oil-contamination and energy recovery can be achieved effectively in MFC with modified anode.
Collapse
Affiliation(s)
- Tahseena Naaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Shilpa Kumari
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Kalpana Sharma
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Vandana Singh
- Department of Microbiology, School of Allied Health Sciences, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Soumya Pandit
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India.
| | - Kanu Priya
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India.
| | - Dipak A Jadhav
- Department of Environmental Engineering, College of Ocean Science and Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea.
| |
Collapse
|
6
|
Bertoni S, Simone E, Sangiorgi S, Albertini B, Passerini N. The use of polymorphic state modifiers in solid lipid microparticles: The role of structural modifications on drug release performance. Eur J Pharm Sci 2024; 192:106650. [PMID: 37995834 DOI: 10.1016/j.ejps.2023.106650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/18/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
This study investigates the correlation between the structural and release properties of solid lipid microparticles (MPs) of tristearin containing 5 % w/w of four different liquid additives used as crystal modifiers: isopropyl myristate (IM), ethyl oleate (EO), oleic acid (OA) and medium chain triglycerides (MCT). All additives accelerated the conversion of the unstable α-form of tristearin, formed after the MPs manufacturing, to the stable β-polymorph and the transformation was completed within 24 h (for IM and EO) or 48 h (for OA and MCT). The kinetic of polymorphic transition at 25 °C was investigated by simultaneous synchrotron SAXS/WAXS and DSC analysis after melting and subsequent cooling of the lipid mixture. After crystallization in the α-phase, additives accelerate the solid-solid phase transformation to β-tristearin. SAXS data showed that two types of structural modifications occurred on MPs during storage: compaction of the crystal packing (slight decrease in lamellar thickness) and crystal growth (increased number of stacked lipid lamellae). The release behavior of a model hydrophilic drug (caffeine) at two different amounts (15 % and 30 %) from MPs was studied in water and biorelevant media simulated the gastric and intestinal environment. It was particularly significant that the introduction of IM, EO and MCT were able to prolong the drug release in water, passing from a diffusion-based Higuchi kinetics to a perfect zero-order kinetic. Moreover, the overall release profiles were higher in biorelevant media, where erosion/digestion of MPs was observed. After 6 months, a moderate but statistically significant change in release profile was observed for the MPs with IM and EO, which can be correlated with the time-dependent structural alterations (i.e. larger average crystallite size) of these formulations; while MPs with OA or MCT displayed stable release profiles. These findings help to understand the correlation between release behavior, polymorphism and supramolecular-level structural modification of lipid formulations containing crystal modifiers.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, Bologna 40127, Italy
| | - Elena Simone
- Department of Applied Science and Technology, Politecnico di Torino, Torino 10129, Italy
| | - Stefano Sangiorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, Bologna 40127, Italy
| | - Beatrice Albertini
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, Bologna 40127, Italy.
| | - Nadia Passerini
- Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, Bologna 40127, Italy
| |
Collapse
|
7
|
Varalakshmi GS, Pawar CS, Manikantan V, Pillai AS, Alexander A, Akash BA, Prasad NR, Enoch IVMV. Dysprosium-containing Cobalt Sulfide Nanoparticles as Anticancer Drug Carriers. Curr Drug Deliv 2024; 21:1128-1141. [PMID: 37592787 DOI: 10.2174/1567201821666230817122011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND Among various materials designed for anticancer drug transport, sulfide nanoparticles are uniquely intriguing owing to their spectral characteristics. Exploration of newer nanoscale copper sulfide particles with dysprosium doping is reported herein. It leads to a change in the physicochemical properties of the sulfide nanoparticles and hence the difference in drug release and cytotoxicity. OBJECTIVE We intend to purport the suitably engineered cobalt sulfide and dysprosium-doped cobalt sulfide nanoparticles that are magnetic and NIR-absorbing, as drug delivery vehicles. The drug loading and release are based on the supramolecular drug complex formation on the surface of the nanoparticles. METHOD The nanomaterials are synthesized employing hydrothermal procedures, coated with a biocompatible poly-β-cyclodextrin, and characterized using the methods of diffractometry, microscopy, spectroscopy, thermogravimetry and magnetometry. The sustained drug release is investigated in vitro. 5-Fluorouracil is loaded in the nanocarriers. The empty and 5-fluorouracil-loaded nanocarriers are screened for their anti-breast cancer activity in vitro on MCF-7 cells. RESULTS The size of the nanoparticles is below 10 nm. They show soft ferromagnetic characteristics. Further, they show broad NIR absorption bands extending up to 1200 nm, with the dysprosium-doped material displaying greater absorbance. The drug 5-fluorouracil is encapsulated in the nanocarriers and released sustainably, with the expulsion duration extending over 10 days. The IC50 of the blank and the drug-loaded cobalt sulfide are 16.24 ± 3.6 and 12.2 ± 2.6 μg mL-1, respectively. For the drug-loaded, dysprosium-doped nanocarrier, the IC50 value is 9.7 ± 0.3 μg mL-1. CONCLUSION The ultrasmall nanoparticles possess a size suitable for drug delivery and are dispersed well in the aqueous medium. The release of the loaded 5-fluorouracil is slow and sustained. The anticancer activity of the drug-loaded nanocarrier shows an increase in efficacy, and the cytotoxicity is appreciable due to the controlled release. The nanocarriers show multi-functional characteristics, i.e., magnetic and NIR-absorbing, and are promising drug delivery agents.
Collapse
Affiliation(s)
- Govindaraj Sri Varalakshmi
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Charan Singh Pawar
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - Varnitha Manikantan
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Archana Sumohan Pillai
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Aleyamma Alexander
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Bose Allben Akash
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| |
Collapse
|
8
|
López-Mayán JJ, Álvarez-Fernández B, Peña-Vázquez E, Barciela-Alonso MC, Moreda-Piñeiro A, Maguire J, Mackey M, Quarato M, Pinheiro I, Espiña B, Rodríguez-Lorenzo L, Bermejo-Barrera P. Bioaccumulation of titanium dioxide nanoparticles in green (Ulva sp.) and red (Palmaria palmata) seaweed. Mikrochim Acta 2023; 190:287. [PMID: 37420086 PMCID: PMC10329078 DOI: 10.1007/s00604-023-05849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/26/2023] [Indexed: 07/09/2023]
Abstract
A bioaccumulation study in red (Palmaria palmata) and green (Ulva sp.) seaweed has been carried out after exposure to different concentrations of citrate-coated titanium dioxide nanoparticles (5 and 25 nm) for 28 days. The concentration of total titanium and the number and size of accumulated nanoparticles in the seaweeds has been determined throughout the study by inductively coupled plasma mass spectrometry (ICP-MS) and single particle-ICP-MS (SP-ICP-MS), respectively. Ammonia was used as a reaction gas to minimize the effect of the interferences in the 48Ti determination by ICP-MS. Titanium concentrations measured in Ulva sp. were higher than those found in Palmaria palmata for the same exposure conditions. The maximum concentration of titanium (61.96 ± 15.49 μg g-1) was found in Ulva sp. after 28 days of exposure to 1.0 mg L-1 of 5 nm TiO2NPs. The concentration and sizes of TiO2NPs determined by SP-ICP-MS in alkaline seaweed extracts were similar for both seaweeds exposed to 5 and 25 nm TiO2NPs, which indicates that probably the element is accumulated in Ulva sp. mainly as ionic titanium or nanoparticles smaller than the limit of detection in size (27 nm). The implementation of TiO2NPs in Ulva sp. was confirmed by electron microscopy (TEM/STEM) in combination with energy dispersive X-Ray analysis (EDX).
Collapse
Affiliation(s)
- Juan José López-Mayán
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Blanca Álvarez-Fernández
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Elena Peña-Vázquez
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - María Carmen Barciela-Alonso
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Julie Maguire
- Indigo Rock Marine Research, Gearhies, Bantry, Co. Cork, P75 AX07, Ireland
| | - Mick Mackey
- Indigo Rock Marine Research, Gearhies, Bantry, Co. Cork, P75 AX07, Ireland
| | - Monica Quarato
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n, 4715-330, Braga, Portugal
| | - Ivone Pinheiro
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n, 4715-330, Braga, Portugal
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n, 4715-330, Braga, Portugal
| | - Laura Rodríguez-Lorenzo
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, s/n, 4715-330, Braga, Portugal
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Institute of Materials (iMATUS), Faculty of Chemistry, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
| |
Collapse
|
9
|
Vasquez-Caballero MA, Canchanya-Huaman Y, Mayta-Armas AF, Pomalaya-Velasco J, Checca-Huaman NR, Bendezú-Roca Y, Ramos-Guivar JA. Pb(II) Uptake from Polluted Irrigation Water Using Anatase TiO 2 Nanoadsorbent. Molecules 2023; 28:4596. [PMID: 37375151 DOI: 10.3390/molecules28124596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The adsorption characteristics of titanium dioxide nanoparticles (nano-TiO2) for the removal of Pb(II) from irrigation water were investigated in this work. To accomplish this, several adsorption factors, such as contact time and pH, were tested to assess adsorption efficiencies and mechanisms. Before and after the adsorption experiments, commercial nano-TiO2 was studied using X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), energy dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). The outcomes showed that anatase nano-TiO2 was remarkably efficient in cleaning Pb(II) from water, with a removal efficiency of more than 99% after only one hour of contact time at a pH of 6.5. Adsorption isotherms and kinetic adsorption data matched the Langmuir and Sips models quite well, showing that the adsorption process occurred at homogenous sites on the surface of nano-TiO2 by forming a Pb(II) adsorbate monolayer. The XRD and TEM analysis of nano-TiO2 following the adsorption procedure revealed a non-affected single phase (anatase) with crystallite sizes of 9.9 nm and particle sizes of 22.46 nm, respectively. According to the XPS data and analyzed adsorption data, Pb ions accumulated on the surface of nano-TiO2 through a three-step mechanism involving ion exchange and hydrogen bonding mechanisms. Overall, the findings indicate that nano-TiO2 has the potential to be used as an effective and long-lasting mesoporous adsorbent in the treatment and cleaning of Pb(II) from water bodies.
Collapse
Affiliation(s)
- Miguel A Vasquez-Caballero
- Laboratorio de No Metálicos, Facultad de Ingeniería Química, Universidad Nacional del Centro del Perú (UNCP), Av. Mariscal Ramón Castilla Nº 3909, El Tambo, Huancayo 12000, Peru
| | - Yamerson Canchanya-Huaman
- Laboratorio de No Metálicos, Facultad de Ingeniería Química, Universidad Nacional del Centro del Perú (UNCP), Av. Mariscal Ramón Castilla Nº 3909, El Tambo, Huancayo 12000, Peru
| | - Angie F Mayta-Armas
- Laboratorio de No Metálicos, Facultad de Ingeniería Química, Universidad Nacional del Centro del Perú (UNCP), Av. Mariscal Ramón Castilla Nº 3909, El Tambo, Huancayo 12000, Peru
| | - Jemina Pomalaya-Velasco
- Laboratorio de No Metálicos, Facultad de Ingeniería Química, Universidad Nacional del Centro del Perú (UNCP), Av. Mariscal Ramón Castilla Nº 3909, El Tambo, Huancayo 12000, Peru
| | | | - Yéssica Bendezú-Roca
- Laboratorio de No Metálicos, Facultad de Ingeniería Química, Universidad Nacional del Centro del Perú (UNCP), Av. Mariscal Ramón Castilla Nº 3909, El Tambo, Huancayo 12000, Peru
| | - Juan A Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru
| |
Collapse
|
10
|
Mendoza-Villa F, Checca-Huaman NR, Ramos-Guivar JA. Ecotoxicological Properties of Titanium Dioxide Nanomorphologies in Daphnia magna. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050927. [PMID: 36903805 PMCID: PMC10005163 DOI: 10.3390/nano13050927] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/05/2023]
Abstract
In this work, the structural, vibrational, morphological, and colloidal properties of commercial 15.1 nm TiO2 nanoparticles (NPs) and nanowires (NWs, 5.6 thickness, 74.6 nm length) were studied with the purpose of determining their ecotoxicological properties. This was achieved by evaluating acute ecotoxicity experiments carried out in the environmental bioindicator Daphnia magna, where their 24-h lethal concentration (LC50) and morphological changes were evaluated using a TiO2 suspension (pH = 7) with point of zero charge at 6.5 for TiO2 NPs (hydrodynamic diameter of 130 nm) and 5.3 for TiO2 NWs (hydrodynamic diameter of 118 nm). Their LC50 values were 157 and 166 mg L-1 for TiO2 NWs and TiO2 NPs, respectively. The reproduction rate of D. magna after fifteen days of exposure to TiO2 nanomorphologies was delayed (0 pups for TiO2 NWs and 45 neonates for TiO2 NPs) in comparison with the negative control (104 pups). From the morphological experiments, we may conclude that the harmful effects of TiO2 NWs are more severe than those of 100% anatase TiO2 NPs, likely associated with brookite (36.5 wt. %) and protonic trititanate (63.5 wt. %) presented in TiO2 NWs according to Rietveld quantitative phase analysis. Specifically, significant change in the heart morphological parameter was observed. In addition, the structural and morphological properties of TiO2 nanomorphologies were investigated using X-ray diffraction and electron microscopy techniques to confirm the physicochemical properties after the ecotoxicological experiments. The results reveal that no alteration in the chemical structure, size (16.5 nm for TiO2 NPs and 6.6 thickness and 79.2 nm length for NWs), and composition occurred. Hence, both TiO2 samples can be stored and reused for future environmental purposes, e.g., water nanoremediation.
Collapse
Affiliation(s)
- Freddy Mendoza-Villa
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru
| | - Noemi-Raquel Checca-Huaman
- Centro Brasileiro de Pesquisas Físicas (CBPF), R. Xavier Sigaud, 150, Urca, Rio de Janeiro 22290-180, Brazil
| | - Juan A. Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru
| |
Collapse
|
11
|
Improvement X-ray radiation shield characteristics of composite cement/Titanium dioxide (TiO2)/Barium carbonate (BaCO3): Stability crystal structure and bonding characteristics. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Salazar-Rodriguez R, Aliaga Guerra D, Greneche JM, Taddei KM, Checca-Huaman NR, Passamani EC, Ramos-Guivar JA. Presence of Induced Weak Ferromagnetism in Fe-Substituted YFe xCr 1-xO 3 Crystalline Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3516. [PMID: 36234644 PMCID: PMC9565242 DOI: 10.3390/nano12193516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Fe-substituted YFexCr1-xO3 crystalline compounds show promising magnetic and multiferroic properties. Here we report the synthesis and characterization of several compositions from this series. Using the autocombustion route, various compositions (x = 0.25, 0.50, 0.6, 0.75, 0.9, and 1) were synthesized as high-quality crystalline powders. In order to obtain microscopic and atomic information about their structure and magnetism, characterization was performed using room temperature X-ray diffraction and energy dispersion analysis as well as temperature-dependent neutron diffraction, magnetometry, and 57Fe Mössbauer spectrometry. Rietveld analysis of the diffraction data revealed a crystallite size of 84 (8) nm for YFeO3, while energy dispersion analysis indicated compositions close to the nominal compositions. The magnetic results suggested an enhancement of the weak ferromagnetism for the YFeO3 phase due to two contributions. First, a high magnetocrystalline anisotropy was associated with the crystalline character that favored a unique high canting angle of the antiferromagnetic phase (13°), as indicated by the neutron diffraction analysis. This was also evidenced by the high magnetic hysteresis curves up to 90 kOe by a remarkable high critical coercivity value of 46.7 kOe at room temperature. Second, the Dzyaloshinskii-Moriya interactions between homogenous and heterogeneous magnetic pairs resulted from the inhomogeneous distribution of Fe3+ and Cr3+ ions, as indicated by 57Fe Mössbauer studies. Together, these results point to new methods of controlling the magnetic properties of these materials.
Collapse
Affiliation(s)
- Roberto Salazar-Rodriguez
- Facultad de Ciencias, Universidad Nacional de Ingeniería (UNI), Av. Túpac Amaru 210, Rímac, Lima 15333, Peru
| | - Domingo Aliaga Guerra
- Facultad de Ciencias, Universidad Nacional de Ingeniería (UNI), Av. Túpac Amaru 210, Rímac, Lima 15333, Peru
| | - Jean-Marc Greneche
- Institut des Molécules and Matériaux du Mans (IMMM UMR CNRS 6283), University Le Mans, Avenue Olivier Messiaen, Cedex 9, 72085 Le Mans, France
| | - Keith M. Taddei
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
| | - Noemi-Raquel Checca-Huaman
- Centro Brasileiro de Pesquisas Físicas (CBPF), R. Xavier Sigaud, 150, Urca, Rio de Janeiro 22290-180, Brazil
| | - Edson C. Passamani
- Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, Brazil
| | - Juan A. Ramos-Guivar
- Grupo de Investigación de Nanotecnología Aplicada para Biorremediación Ambiental, Energía, Biomedicina y Agricultura (NANOTECH), Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Av. Venezuela Cdra 34 S/N, Ciudad Universitaria, Lima 15081, Peru
| |
Collapse
|
13
|
Raman, TEM, EELS, and Magnetic Studies of a Magnetically Reduced Graphene Oxide Nanohybrid following Exposure to Daphnia magna Biomarkers. NANOMATERIALS 2022; 12:nano12111805. [PMID: 35683661 PMCID: PMC9182540 DOI: 10.3390/nano12111805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
Abstract
A ternary nanocomposite made of nanomaghemite, nanoanatase, and graphene oxide has been successfully synthesized using an inorganic coprecipitation approach, and it has been systematically investigated by X-ray diffraction, transmission electron microscopy, and different spectrocopic techniques (electron energy loss, µ-Raman, and 57Fe Mössbauer) after interaction with an effluent containing Daphnia magna individuals. Specifically, the influence of the nanocomposite over the Daphnia magna carapace, administered in two doses (0.5 mg mL−1 and 1 mg mL−1), has been characterized using µ-Raman spectroscopy before and after laser burning protocols, producing information about the physicochemical interaction with the biomarker. The thermal stability of the nanocomposite was found to be equal to 500 °C, where the nanoanatase and the nanomaghemite phases have respectively conserved their structural identities. The magnetic properties of the nanomaghemite have also been kept unchanged even after the high-temperature experiments and exposure to Daphnia magna. In particular, the size, texture, and structural and morphological properties of the ternary nanocomposite have not shown any significant physicochemical modifications after magnetic decantation recuperation. A significant result is that the graphene oxide reduction was kept even after the ecotoxicological assays. These sets of observations are based on the fact that while the UV-Vis spectrum has confirmed the graphene oxide reduction with a localized peak at 260 nm, the 300-K and 15-K 57Fe Mössbauer spectra have only revealed the presence of stoichiometric maghemite, i.e., the two well-defined static magnetic sextets often found in the bulk ferrimagnetic counterpart phase. The Mössbauer results have also agreed with the trivalent-like valence state of Fe ions, as also suggested by electron energy loss spectroscopy data. Thus, the ternary nanocomposite does not substantially affect the Daphnia magna, and it can be easily recovered using an ordinary magnetic decantation protocol due to the ferrimagnetic-like character of the nanomaghemite phase. Consequently, it shows remarkable physicochemical properties for further reuse, such as cleaning by polluted effluents, at least where Daphnia magna species are present.
Collapse
|
14
|
Saqezi AS, Kermanian M, Ramazani A, Sadighian S. Synthesis of Graphene Oxide/Iron Oxide/Au Nanocomposite for Quercetin Delivery. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02259-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Hornak J. Synthesis, Properties, and Selected Technical Applications of Magnesium Oxide Nanoparticles: A Review. Int J Mol Sci 2021; 22:ijms222312752. [PMID: 34884556 PMCID: PMC8657440 DOI: 10.3390/ijms222312752] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
In the last few decades, there has been a trend involving the use of nanoscale fillers in a variety of applications. Significant improvements have been achieved in the areas of their preparation and further applications (e.g., in industry, agriculture, and medicine). One of these promising materials is magnesium oxide (MgO), the unique properties of which make it a suitable candidate for use in a wide range of applications. Generally, MgO is a white, hygroscopic solid mineral, and its lattice consists of Mg2+ ions and O2− ions. Nanostructured MgO can be prepared through different chemical (bottom-up approach) or physical (top-down approach) routes. The required resultant properties (e.g., bandgap, crystallite size, and shape) can be achieved depending on the reaction conditions, basic starting materials, or their concentrations. In addition to its unique material properties, MgO is also potentially of interest due to its nontoxicity and environmental friendliness, which allow it to be widely used in medicine and biotechnological applications.
Collapse
Affiliation(s)
- Jaroslav Hornak
- Department of Materials and Technology, Faculty of Electrical Engineering, University of West Bohemia, 301 00 Pilsen, Czech Republic
| |
Collapse
|