1
|
Lin Q, Chee PL, Pang JJM, Loh XJ, Kai D, Lim JYC. Sustainable Polymeric Biomaterials from Alternative Feedstocks. ACS Biomater Sci Eng 2024; 10:6751-6765. [PMID: 39382551 DOI: 10.1021/acsbiomaterials.4c01154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
As materials engineered to interact with biological systems for medical purposes, polymeric biomedical materials have revolutionized and are indispensable in modern healthcare. However, aging populations and improving healthcare standards worldwide have resulted in ever-increasing demands for such biomaterials. Currently, many clinically used polymers are derived from nonrenewable petroleum resources, thus spurring the need for exploring alternatives for the next generation of sustainable biomaterials. Other than biomass, this Perspective also spotlights carbon dioxide and postuse plastics as viable resources potentially suitable for biomaterial production. For each alternative feedstock, key recent developments and practical considerations are discussed, including emerging biomaterial applications, possible feedstock sources, and hindrances toward translation and practical adoption. Other than replacements for petroleum-derived polymers, we explore how utilization of these alternatives capitalizes on their intrinsic physiochemical and material properties to achieve their desired therapeutic effects. We hope that this Perspective can stimulate further development in sustainable biomaterials to achieve practical therapeutic benefits as part of a circular materials economy with minimal environmental impact.
Collapse
Affiliation(s)
- Qianyu Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Pei Lin Chee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Jaime J M Pang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| | - Dan Kai
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Dr, 637459, Singapore
| | - Jason Y C Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, National University of Singapore (NUS), 9 Engineering Drive 1, Singapore 117576, Singapore
| |
Collapse
|
2
|
Yu Q, Gao Y, Dai W, Li D, Zhang L, Hameed MMA, Guo R, Liu M, Shi X, Cao X. Cell Membrane-Camouflaged Chitosan-Polypyrrole Nanogels Co-Deliver Drug and Gene for Targeted Chemotherapy and Bone Metastasis Inhibition of Prostate Cancer. Adv Healthc Mater 2024; 13:e2400114. [PMID: 38581263 DOI: 10.1002/adhm.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/30/2024] [Indexed: 04/08/2024]
Abstract
The development of functional nanoplatforms to improve the chemotherapy outcome and inhibit distal cancer cell metastasis remains an extreme challenge in cancer management. In this work, a human-derived PC-3 cancer cell membrane-camouflaged chitosan-polypyrrole nanogel (CH-PPy NG) platform, which can be loaded with chemotherapeutic drug docetaxel (DTX) and RANK siRNA for targeted chemotherapy and gene silencing-mediated metastasis inhibition of late-stage prostate cancer in a mouse model, is reported. The prepared NGs with a size of 155.8 nm show good biocompatibility, pH-responsive drug release profile, and homologous targeting specificity to cancer cells, allowing for efficient and precise drug/gene co-delivery. Through in-vivo antitumor treatment in a xenografted PC-3 mouse tumor model, it is shown that such a CH-PPy NG-facilitated co-delivery system allows for effective chemotherapy to slow down the tumor growth rate, and effectively inhibits the metastasis of prostate cancer to the bone via downregulation of the RANK/RANKL signaling pathway. The created CH-Ppy NGs may be utilized as a promising platform for enhanced chemotherapy and anti-metastasis treatment of prostate cancer.
Collapse
Affiliation(s)
- Qiuyu Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Waicong Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Danni Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Lu Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Meera Moydeen Abdul Hameed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Rui Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Min Liu
- Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200336, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
- CQM - Centro de Química da Madeira, University of Madeira, Campus Universitário da Penteada, Funchal, 9020-105, Portugal
| | - Xueyan Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Sun M, Zhang H, Liu J, Chen J, Cui Y, Wang S, Zhang X, Yang Z. Extracellular Vesicles: A New Star for Gene Drug Delivery. Int J Nanomedicine 2024; 19:2241-2264. [PMID: 38465204 PMCID: PMC10924919 DOI: 10.2147/ijn.s446224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/20/2024] [Indexed: 03/12/2024] Open
Abstract
Recently, gene therapy has become a subject of considerable research and has been widely evaluated in various disease models. Though it is considered as a stand-alone agent for COVID-19 vaccination, gene therapy is still suffering from the following drawbacks during its translation from the bench to the bedside: the high sensitivity of exogenous nucleic acids to enzymatic degradation; the severe side effects induced either by exogenous nucleic acids or components in the formulation; and the difficulty to cross the barriers before reaching the therapeutic target. Therefore, for the successful application of gene therapy, a safe and reliable transport vector is urgently needed. Extracellular vesicles (EVs) are the ideal candidate for the delivery of gene drugs owing to their low immunogenicity, good biocompatibility and low toxicity. To better understand the properties of EVs and their advantages as gene drug delivery vehicles, this review covers from the origin of EVs to the methods of EVs generation, as well as the common methods of isolation and purification in research, with their pros and cons discussed. Meanwhile, the engineering of EVs for gene drugs is also highlighted. In addition, this paper also presents the progress in the EVs-mediated delivery of microRNAs, small interfering RNAs, messenger RNAs, plasmids, and antisense oligonucleotides. We believe this review will provide a theoretical basis for the development of gene drugs.
Collapse
Affiliation(s)
- Man Sun
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Jiayi Liu
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Jiayi Chen
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Yaxin Cui
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Simiao Wang
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| | - Xiangyu Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, 310020, People’s Republic of China
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun, 130012, People’s Republic of China
| |
Collapse
|
4
|
Gu J, Xu Z, Liu Q, Tang S, Zhang W, Xie S, Chen X, Chen J, Yong KT, Yang C, Xu G. Building a Better Silver Bullet: Current Status and Perspectives of Non-Viral Vectors for mRNA Vaccines. Adv Healthc Mater 2024; 13:e2302409. [PMID: 37964681 DOI: 10.1002/adhm.202302409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Indexed: 11/16/2023]
Abstract
In recent years, messenger RNA (mRNA) vaccines have exhibited great potential to replace conventional vaccines owing to their low risk of insertional mutagenesis, safety and efficacy, rapid and scalable production, and low-cost manufacturing. With the great achievements of chemical modification and sequence optimization methods of mRNA, the key to the success of mRNA vaccines is strictly dependent on safe and efficient gene vectors. Among various delivery platforms, non-viral mRNA vectors could represent perfect choices for future clinical translation regarding their safety, sufficient packaging capability, low immunogenicity, and versatility. In this review, the recent progress in the development of non-viral mRNA vectors is focused on. Various organic vectors including lipid nanoparticles (LNPs), polymers, peptides, and exosomes for efficient mRNA delivery are presented and summarized. Furthermore, the latest advances in clinical trials of mRNA vaccines are described. Finally, the current challenges and future possibilities for the clinical translation of these promising mRNA vectors are also discussed.
Collapse
Affiliation(s)
- Jiayu Gu
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan, University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518102, China
| | - Shiqi Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Wenguang Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Shouxia Xie
- Department of Pharmacy, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan, University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, China
- Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, 518020, China
| | - Xiaoyan Chen
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women's and Children's Hospital, Shenzhen, 518102, China
| | - Jiajie Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
| |
Collapse
|
5
|
Dokuchaeva AA, Vladimirov SV, Borodin VP, Karpova EV, Vaver AA, Shiliaev GE, Chebochakov DS, Kuznetsov VA, Surovtsev NV, Adichtchev SV, Malikov AG, Gulov MA, Zhuravleva IY. Influence of Single-Wall Carbon Nanotube Suspension on the Mechanical Properties of Polymeric Films and Electrospun Scaffolds. Int J Mol Sci 2023; 24:11092. [PMID: 37446270 DOI: 10.3390/ijms241311092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Carbon nanotubes (CNTs) are used in applications ranging from electrical engineering to medical device manufacturing. It is well known that the addition of nanotubes can influence the mechanical properties of various industrial materials, including plastics. Electrospinning is a popular method for fabricating nanomaterials, widely suggested for polymer scaffold manufacturing. In this study, we aimed to describe the influence of single-walled carbon nanotube (SWCNT) suspensions on polymeric poured films and electrospun scaffolds and to investigate their structural and mechanical properties obtained from various compositions. To obtain films and electrospun scaffolds of 8 mm diameter, we used poly-ε-caprolactone (PCL) and poly(cyclohexene carbonate) (PCHC) solutions containing several mass fractions of SWCNT. The samples were characterized using tensile tests, atomic force and scanning electronic microscopy (AFM and SEM). All the studied SWCNT concentrations were shown to decrease the extensibility and strength of electrospun scaffolds, so SWCNT use was considered unsuitable for this technique. The 0.01% mass fraction of SWCNT in PCL films increased the polymer strength, while fractions of 0.03% and more significantly decreased the polymer strength and extensibility compared to the undoped polymer. The PHCH polymeric films showed a similar behavior with an extremum at 0.02% concentration for strength at break.
Collapse
Affiliation(s)
- Anna A Dokuchaeva
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Sergey V Vladimirov
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Vsevolod P Borodin
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Elena V Karpova
- Group of Optical Spectrometry, Center of Spectral Investigations, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Andrey A Vaver
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| | - Gleb E Shiliaev
- LLC "Tuball Center NSK", 24 Inzhenernaya St., Novosibirsk 630090, Russia
| | | | - Vasily A Kuznetsov
- I.Ya. Postovsky Insititute of Organic Synthesis of the Ural Branch of the Russian Academy of Sciences (IOS UB RAS), S. Kovalevskoy St., 22/20, Yekaterinburg 620108, Russia
| | - Nikolay V Surovtsev
- Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences, Academician Koptyug Avenue, 1, Novosibirsk 630090, Russia
| | - Sergey V Adichtchev
- Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences, Academician Koptyug Avenue, 1, Novosibirsk 630090, Russia
| | - Alexander G Malikov
- Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 4/1, Novosibirsk 630090, Russia
| | - Mikhail A Gulov
- Khristianovich Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 4/1, Novosibirsk 630090, Russia
| | - Irina Y Zhuravleva
- Institute of Experimental Biology and Medicine, Federal State Budgetary Institution National Medical Research Center Named after Academician E.N. Meshalkin of the Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia
| |
Collapse
|
6
|
Andrade F, German-Cortés J, Montero S, Carcavilla P, Baranda-Martínez-Abascal D, Moltó-Abad M, Seras-Franzoso J, Díaz-Riascos ZV, Rafael D, Abasolo I. The Nanotechnology-Based Approaches against Kirsten Rat Sarcoma-Mutated Cancers. Pharmaceutics 2023; 15:1686. [PMID: 37376135 DOI: 10.3390/pharmaceutics15061686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Kirsten rat sarcoma (KRAS) is a small GTPase which acts as a molecular switch to regulate several cell biological processes including cell survival, proliferation, and differentiation. Alterations in KRAS have been found in 25% of all human cancers, with pancreatic cancer (90%), colorectal cancer (45%), and lung cancer (35%) being the types of cancer with the highest mutation rates. KRAS oncogenic mutations are not only responsible for malignant cell transformation and tumor development but also related to poor prognosis, low survival rate, and resistance to chemotherapy. Although different strategies have been developed to specifically target this oncoprotein over the last few decades, almost all of them have failed, relying on the current therapeutic solutions to target proteins involved in the KRAS pathway using chemical or gene therapy. Nanomedicine can certainly bring a solution for the lack of specificity and effectiveness of anti-KRAS therapy. Therefore, nanoparticles of different natures are being developed to improve the therapeutic index of drugs, genetic material, and/or biomolecules and to allow their delivery specifically into the cells of interest. The present work aims to summarize the most recent advances related to the use of nanotechnology for the development of new therapeutic strategies against KRAS-mutated cancers.
Collapse
Affiliation(s)
- Fernanda Andrade
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
| | - Júlia German-Cortés
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Sara Montero
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Pilar Carcavilla
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Diego Baranda-Martínez-Abascal
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
| | - Marc Moltó-Abad
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Joaquín Seras-Franzoso
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Zamira Vanessa Díaz-Riascos
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Diana Rafael
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Ibane Abasolo
- Clinical Biochemistry, Drug Delivery and Therapy Group (CB-DDT), Vall d'Hebron Institut of Research (VHIR), Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingenería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto De Salud Carlos III, 08035 Barcelona, Spain
- Functional Validation & Preclinical Research (FVPR)/U20 ICTS Nanbiosis, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Clinical Biochemistry Service, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, 08035 Barcelona, Spain
| |
Collapse
|
7
|
Dwivedi M, Ghosh D, Saha A, Hasan S, Jindal D, Yadav H, Yadava A, Dwivedi M. Biochemistry of exosomes and their theranostic potential in human diseases. Life Sci 2023; 315:121369. [PMID: 36639052 DOI: 10.1016/j.lfs.2023.121369] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
Exosomes are classified as special extracellular vesicles in the eukaryotic system having diameters ranging from 30 to 120 nm. These vesicles carry various endogenous molecules including DNA, mRNA, microRNA, circular RNA, and proteins, crucial for numerous metabolic reactions and can be proposed as therapeutic or diagnostic targets for several disorders. The donor exosomes release their content to recipient cells and further establish the significant intercellular communication showing biological effects by triggering environmental alterations. Exosomes derived from mesenchymal and dendritic cells have demonstrated their therapeutic potential against organ injury. Yet, various intricacies are involved in exosomal transport and its inclusion in cancer and other disease pathogenesis needs to be explored. The exosomes represent profound potential as diagnostic biomarkers and therapeutic carriers in various pathophysiological conditions such as neurodegenerative diseases, chronic cancers, infectious diseases, female reproductive diseases and cardiovascular diseases. In the current study, we demonstrate the advancements in the implication of exosomes as one of the irrefutable prognostic biological targets in human health and diseases.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| | - Diya Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Anwesha Saha
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Divya Jindal
- Center for Emerging Diseases, Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Hitendra Yadav
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Anuradha Yadava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Medha Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| |
Collapse
|
8
|
Li M, Lin ZI, Yang J, Huang H, Liu GL, Liu Q, Zhang X, Zhang Y, Xu Z, Lin H, Chai Y, Chen X, Ko BT, Liu J, Chen CK, Yang C. Biodegradable Carbon Dioxide-Derived Non-Viral Gene Vectors for Osteosarcoma Gene Therapy. Adv Healthc Mater 2023; 12:e2201306. [PMID: 36308025 DOI: 10.1002/adhm.202201306] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/22/2022] [Indexed: 01/29/2023]
Abstract
Osteosarcoma often occurs in children and adolescents with high invasiveness and high mortality. Polo-like kinase 1 (PLK1) overexpressed in most tumors promotes cancer cell proliferation and transformation. PLK1 is considered as a therapeutic target for osteosarcoma. RNA interference-based therapies are employed to combat osteosarcoma through silencing PLK1 gene expression. However, the treatment results remain unsatisfactory due to the lack of a safe and efficient nonviral gene vector. To tackle this hurdle, biodegradable and CO2 -derivative cationic poly(vinylcyclohexene carbonates) (CPCHCs) are used as gene vectors to perform a siPLK1 therapeutic strategy for osteosarcoma treatment. Of those CPCHCs, CPCHC60 demonstrates the most excellent performance in gene transfection efficiency, endo-lysosome escaping, biodegradability, and biosafety. With the treatment of CPCHCs/siRNA nanoparticles, the expression level of PLK1 gene in osteosarcoma cells is significantly down-regulated. Subsequently, cells are arrested in the G2 /M phase and subsequently dead in the form of apoptosis, resulting in significant tumor regression both in vitro and in vivo. This study brings a new insight into the development of superior nonviral gene vectors for practical cancer treatment. Based on the results, the resulting nanoparticle-based gene drug formation is considered to have a highly successful chance in further translational nanomedicine applications.
Collapse
Affiliation(s)
- Meirong Li
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Guangdong, 518172, P. R. China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan ROC
| | - Jingyu Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Haoqiang Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan ROC
| | - Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ying Zhang
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Guangdong, 518172, P. R. China.,Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Haoming Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yujuan Chai
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan ROC
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Guangdong, 518172, P. R. China
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan ROC
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
9
|
siRNA and targeted delivery systems in breast cancer therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1167-1188. [PMID: 36562927 DOI: 10.1007/s12094-022-03043-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.
Collapse
|
10
|
Liu X, Jiang Z, Xing D, Yang Y, Li Z, Sun Z. Recent progress in nanocomposites of carbon dioxide fixation derived reproducible biomedical polymers. Front Chem 2022; 10:1035825. [PMID: 36277338 PMCID: PMC9585172 DOI: 10.3389/fchem.2022.1035825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
In recent years, the environmental problems accompanying the extensive application of biomedical polymer materials produced from fossil fuels have attracted more and more attentions. As many biomedical polymer products are disposable, their life cycle is relatively short. Most of the used or overdue biomedical polymer products need to be burned after destruction, which increases the emission of carbon dioxide (CO2). Developing biomedical products based on CO2 fixation derived polymers with reproducible sources, and gradually replacing their unsustainable fossil-based counterparts, will promote the recycling of CO2 in this field and do good to control the greenhouse effect. Unfortunately, most of the existing polymer materials from renewable raw materials have some property shortages, which make them unable to meet the gradually improved quality and property requirements of biomedical products. In order to overcome these shortages, much time and effort has been dedicated to applying nanotechnology in this field. The present paper reviews recent advances in nanocomposites of CO2 fixation derived reproducible polymers for biomedical applications, and several promising strategies for further research directions in this field are highlighted.
Collapse
Affiliation(s)
- Xin Liu
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhiwen Jiang
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Zhiwen Jiang, ; Zhiying Li,
| | - Dejun Xing
- Tumor Hospital of Jilin Province, Changchun, China
| | - Yan Yang
- Tumor Hospital of Jilin Province, Changchun, China
| | - Zhiying Li
- Tumor Hospital of Jilin Province, Changchun, China
- *Correspondence: Zhiwen Jiang, ; Zhiying Li,
| | - Zhiqiang Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
11
|
Liu GL, Ko BT. Alternating copolymerization of carbon dioxide with alicyclic epoxides using bimetallic nickel(II) complex catalysts containing benzotriazole-based salen-type derivatives: Catalysis and kinetics. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Liu Q, Zhang Y, Huang J, Xu Z, Li X, Yang J, Huang H, Tang S, Chai Y, Lin J, Yang C, Liu J, Lin S. Mesoporous silica-coated silver nanoparticles as ciprofloxacin/siRNA carriers for accelerated infected wound healing. J Nanobiotechnology 2022; 20:386. [PMID: 35999547 PMCID: PMC9400313 DOI: 10.1186/s12951-022-01600-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/14/2022] [Indexed: 12/14/2022] Open
Abstract
The colonization of bacterial pathogens is a major concern in wound infection and becoming a public health issue. Herein, a core–shell structured Ag@MSN (silver core embedded with mesoporous silica, AM)-based nanoplatform was elaborately fabricated to co-load ciprofloxacin (CFL) and tumor necrosis factor-α (TNF-α) small interfering RNA (siTNF-α) (AMPC@siTNF-α) for treating the bacterial-infected wound. The growth of bacterial pathogens was mostly inhibited by released silver ions (Ag+) and CFL from AMPC@siTNF-α. Meanwhile, the loaded siTNF-α was internalized by macrophage cells, which silenced the expression of TNF-α (a pro-inflammatory cytokine) in macrophage cells and accelerated the wound healing process by reducing inflammation response. In the in vivo wound model, the Escherichia coli (E. coli)-infected wound in mice almost completely disappeared after treatment with AMPC@siTNF-α, and no suppuration symptom was observed during the course of the treatment. Importantly, this nanoplatform had negligible side effects both in vitro and in vivo. Taken together, this study strongly demonstrates the promising potential of AMPC@siTNF-α as a synergistic therapeutic agent for clinical wound infections.
Collapse
Affiliation(s)
- Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Ying Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.,Central Laboratory, The Second Affiliated Hospital, School of Medicine, Longgang District People's Hospital of Shenzhen, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Jingkai Huang
- Dermatology Department, Southern University of Science and Technology Hospital (SUSTech Hospital), Shenzhen, 518055, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xiang Li
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jingyu Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Haoqiang Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shiqi Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yujuan Chai
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jinbo Lin
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, Longgang District People's Hospital of Shenzhen, The Chinese University of Hong Kong, Shenzhen, 518172, China
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, Longgang District People's Hospital of Shenzhen, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Suxia Lin
- Center of Assisted Reproduction and Embryology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, 518048, China.
| |
Collapse
|
13
|
Lin ZI, Tsai HL, Liu GL, Lu XH, Cheng PW, Chi PL, Wang CK, Tsai TH, Wang CC, Yang JHC, Ko BT, Chen CK. Preparation of CO 2 -based Cationic Polycarbonate/Polyacrylonitrile Nanofibers with an Optimal Fibrous Microstructure for Antibacterial Applications. Macromol Biosci 2022; 22:e2200178. [PMID: 35902381 DOI: 10.1002/mabi.202200178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Indexed: 11/12/2022]
Abstract
Utilizing CO2 as one of the monomer resource, poly(vinylcyclohexene carbonates) (PVCHCs) are used as the precursor for preparing cationic PVCHCs (CPVCHCs) via thiol-ene click functionalization. Through the functionalization, CPVCHC-43 with a tertiary amine density of 43% relative to the backbone is able to display a significantly antibacterial ability against Staphylococcus aureus (S. aureus). Blending CPVCHC-43 with polyacrylonitrile (PAN), CPVCHC/PAN nanofiber meshes (NFMs) have been successfully prepared by electrospinning. More importantly, two crucial fibrous structural factors including CPVCHC/PAN weight ratio and fiber diameter have been systematically investigated for the effects on the antibacterial performance of the NFMs. Sequentially, a quaternization treatment has been employed on the NFMs with an optimal fibrous structure to enhance the antibacterial ability. The resulting quaternized NFMs have demonstrated the great biocidal effects against Gram-positive and Gram-negative bacteria. Moreover, the excellent biocompatibility of the quaternized NFMs have also been thoroughly evaluated and verified. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Han-Lin Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Xie-Hong Lu
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.,Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Chih-Kuang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Chih-Chia Wang
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, 33509, Taiwan.,System Engineering and Technology Program, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
14
|
Zhang Y, Liu Q, Zhang X, Huang H, Tang S, Chai Y, Xu Z, Li M, Chen X, Liu J, Yang C. Recent advances in exosome-mediated nucleic acid delivery for cancer therapy. J Nanobiotechnology 2022; 20:279. [PMID: 35701788 PMCID: PMC9194774 DOI: 10.1186/s12951-022-01472-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer is a leading public health problem worldwide. Its treatment remains a daunting challenge, although significant progress has been made in existing treatments in recent years. A large concern is the poor therapeutic effect due to lack of specificity and low bioavailability. Gene therapy has recently emerged as a powerful tool for cancer therapy. However, delivery methods limit its therapeutic effects. Exosomes, a subset of extracellular vesicles secreted by most cells, have the characteristics of good biocompatibility, low toxicity and immunogenicity, and great designability. In the past decades, as therapeutic carriers and diagnostic markers, they have caught extensive attention. This review introduced the characteristics of exosomes, and focused on their applications as delivery carriers in DNA, messenger RNA (mRNA), microRNA (miRNA), small interfering RNA (siRNA), circular RNA (circRNA) and other nucleic acids. Meanwhile, their application in cancer therapy and exosome-based clinical trials were presented and discussed. Through systematic summarization and analysis, the recent advances and current challenges of exosome-mediated nucleic acid delivery for cancer therapy are introduced, which will provide a theoretical basis for the development of nucleic acid drugs.
Collapse
Affiliation(s)
- Ying Zhang
- Central Laboratory of Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Qiqi Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xinmeng Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Haoqiang Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Shiqi Tang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Yujuan Chai
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Meirong Li
- Central Laboratory of Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Xin Chen
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China
| | - Jia Liu
- Central Laboratory of Longgang District People's Hospital of Shenzhen & The Second Affiliated Hospital, The Chinese University of Hong Kong, Shenzhen, 518172, China.
| | - Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
15
|
Yang C, Huang H, Singh NM, Zhou C, Yang G, Xu Z, Lin H, Xu G, Yong KT, Bazan GC. Synthetic Conjugated Oligoelectrolytes Are Effective siRNA Transfection Carriers: Relevance to Pancreatic Cancer Gene Therapy. Biomacromolecules 2022; 23:1259-1268. [PMID: 35138828 DOI: 10.1021/acs.biomac.1c01498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conjugated oligoelectrolyte COE-S6 contains an elongated conjugated core with three cationic charges at each termini of the internal core. As an analogue of bolaamphiphiles, these structural attributes lead to the formation of spherical nanoplexes with Dh = 205 ± 5.0 nm upon mixing with small interfering RNA (siRNA). COE-S6/siRNA nanocomplexes were shown to be protective toward RNase, stimulate endosome escape, and achieve transfection efficiencies comparable to those achieved with commercially available LIP3000. Moreover, COE-S6/siRNA nanocomplexes enabled efficient silencing of the K-ras gene in pancreatic cancer cells and significant inhibition of cancer tumor growth with negligible in vitro toxicities. More importantly, cell invasion and colony formation of the Panc-1 cells were significantly inhibited, and apoptosis of the pancreatic cancer cells was also promoted. We also note that COE-S6 is much less toxic relative to commercial lipid formulations, and it provides optical signatures that can enable subsequent mechanistic work without the need to label nucleotides. COE-S6-based nanoplexes are thus a promising candidate as nonviral vectors for gene delivery.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Haoqiang Huang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Nishtha Manish Singh
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Cheng Zhou
- Departments of Chemistry and Chemical Engineering, National University of Singapore, 119077 Singapore
| | - Guang Yang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 Singapore
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Haoming Lin
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical Engineering, National University of Singapore, 119077 Singapore
| |
Collapse
|
16
|
Parın FN, Parın U. Spirulina Biomass‐Loaded Thermoplastic Polyurethane/Polycaprolacton (TPU/PCL) Nanofibrous Mats: Fabrication, Characterization, and Antibacterial Activity as Potential Wound Healing. ChemistrySelect 2022. [DOI: 10.1002/slct.202104148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Fatma Nur Parın
- Polymer Materials Engineering Department Faculty of Engineering and Natural Sciences Bursa Technical University Sinan Campus Yıldırım Bursa 16310 Turkey
| | - Uğur Parın
- Microbiology Department Faculty of Veterinary Science Aydın Adnan Menderes University Işıklı Campus Efeler Aydın 09010 Turkey
| |
Collapse
|
17
|
Yang C, Lin ZI, Chen JA, Xu Z, Gu J, Law WC, Yang JHC, Chen CK. Organic/Inorganic Self-Assembled Hybrid Nano-Architectures for Cancer Therapy Applications. Macromol Biosci 2021; 22:e2100349. [PMID: 34735739 DOI: 10.1002/mabi.202100349] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/25/2021] [Indexed: 12/20/2022]
Abstract
Since the conceptualization of nanomedicine, numerous nanostructure-mediated drug formulations have progressed into clinical trials for treating cancer. However, recent clinical trial results indicate such kind of drug formulations has a limited improvement on the antitumor efficacy. This is due to the biological barriers associated with those formulations, for example, circulation stability, extravasation efficiency in tumor, tumor penetration ability, and developed multi-drug resistance. When employing for nanomedicine formulations, pristine organic-based and inorganic-based nanostructures have their own limitations. Accordingly, organic/inorganic (O/I) hybrids have been developed to integrate the merits of both, and to minimize their intrinsic drawbacks. In this context, the recent development in O/I hybrids resulting from a self-assembly strategy will be introduced. Through such a strategy, organic and inorganic building blocks can be self-assembled via either chemical covalent bonds or physical interactions. Based on the self-assemble procedure, the hybridization of four organic building blocks including liposomes, micelles, dendrimers, and polymeric nanocapsules with five functional inorganic nanoparticles comprising gold nanostructures, magnetic nanoparticles, carbon-based materials, quantum dots, and silica nanoparticles will be highlighted. The recent progress of these O/I hybrids in advanced modalities for combating cancer, such as, therapeutic agent delivery, photothermal therapy, photodynamic therapy, and immunotherapy will be systematically reviewed.
Collapse
Affiliation(s)
- Chengbin Yang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Jian-An Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Jiayu Gu
- Department of Pharmacy, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, 518020, China
| | - Wing-Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|