1
|
ElBakry HA, Ammar MM, Moussa TA. Effect of nanodiamonds surface deposition on hydrophilicity, bulk degradation and in-vitrocell adhesion of 3D-printed polycaprolactone scaffolds for bone tissue engineering. Biomed Mater 2024; 19:055016. [PMID: 38917826 DOI: 10.1088/1748-605x/ad5bac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/25/2024] [Indexed: 06/27/2024]
Abstract
This study was designed to deposit nanodiamonds (NDs) on 3D-printed poly-ϵ-caprolactone (PCL) scaffolds and evaluate their effect on the surface topography, hydrophilicity, degradation, andin-vitrocell adhesion compared to untreated PCL scaffolds. The PCL scaffold specimens were 3D-printed by fused deposition modeling (FDM) technique with specific porosity parameters. The 3D-printed specimens' surfaces were modified by NDs deposition followed by oxygen plasma post-treatment using a plasma focus device and a non-thermal atmospheric plasma jet, respectively. Specimens were evaluated through morphological characterization by field emission scanning electron microscope (FESEM), microstructure characterization by Raman spectroscopy, chemical characterization by Fourier transform infrared (FTIR) spectroscopy, hydrophilicity degree by contact angle and water uptake measurements, andin-vitrodegradation measurements (n= 6). In addition,in-vitrobone marrow mesenchymal stem cells adhesion was evaluated quantitatively by confocal microscopy and qualitatively by FESEM at different time intervals after cell seeding (n= 6). The statistical significance level was set atp⩽ 0.05. The FESEM micrographs, the Raman, and FTIR spectra confirmed the successful surface deposition of NDs on scaffold specimens. The NDs treated specimens showed nano-scale features distributed homogeneously across the surface compared to the untreated ones. Also, the NDs treated specimens revealed a statistically significant smaller contact angle (17.45 ± 1.34 degrees), higher water uptake percentage after 24 h immersion in phosphate buffer saline (PBS) (21.56% ± 1.73), and higher degradation rate after six months of immersion in PBS (43.92 ± 0.77%). Moreover, enhanced cell adhesion at all different time intervals was observed in NDs treated specimens with higher nuclei area fraction percentage (69.87 ± 3.97%) compared to the untreated specimens (11.46 ± 1.34%). Surface deposition of NDs with oxygen-containing functional groups on 3D-printed PCL scaffolds increased their hydrophilicity and degradation rate with significant enhancement of thein-vitrocell adhesion compared to untreated PCL scaffolds.
Collapse
Affiliation(s)
- Hadiah A ElBakry
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Biomaterials Department, Faculty of Dentistry, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed M Ammar
- Biomaterials Department, Faculty of oral and dental medicine, Future University in Egypt, Cairo, Egypt
| | - Taheya A Moussa
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Sturari S, Andreana I, Aprà P, Bincoletto V, Kopecka J, Mino L, Zurletti B, Stella B, Riganti C, Arpicco S, Picollo F. Designing functionalized nanodiamonds with hyaluronic acid-phospholipid conjugates for enhanced cancer cell targeting and fluorescence imaging capabilities. NANOSCALE 2024; 16:11610-11622. [PMID: 38855987 DOI: 10.1039/d4nr00932k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nanomedicine aims to develop smart approaches for treating cancer and other diseases to improve patient survival and quality of life. Novel nanoparticles as nanodiamonds (NDs) represent promising candidates to overcome current limitations. In this study, NDs were functionalized with a 200 kDa hyaluronic acid-phospholipid conjugate (HA/DMPE), enhancing the stability of the nanoparticles in water-based solutions and selectivity for cancer cells overexpressing specific HA cluster determinant 44 (CD44) receptors. These nanoparticles were characterized by diffuse reflectance Fourier-transform infrared spectroscopy, Raman spectroscopy, and photoluminescence spectroscopy, confirming the efficacy of the functionalization process. Scanning electron microscopy was employed to evaluate the size distribution of the dry particles, while dynamic light scattering and zeta potential measurements were utilized to evaluate ND behavior in a water-based medium. Furthermore, the ND biocompatibility and uptake mediated by CD44 receptors in three different models of human adenocarcinoma cells were assessed by performing cytofluorimetric assay and confocal microscopy. HA-functionalized nanodiamonds demonstrated the advantage of active targeting in the presence of cancer cells expressing CD44 on the surface, suggesting higher drug delivery to tumors over non-tumor tissues. Even CD44-poorly expressing cancers could be targeted by the NDs, thanks to their good passive diffusion within cancer cells.
Collapse
Affiliation(s)
- Sofia Sturari
- Department of Physics, University of Torino, via P. Giuria 1, 10125 Torino, Italy.
- National Institute of Nuclear Physics, Sect. Torino, via P. Giuria 1, 10125 Torino, Italy
| | - Ilaria Andreana
- Department of Drug Science and Technology, University of Torino, via P. Giuria 9, 10125, Torino, Italy.
| | - Pietro Aprà
- National Institute of Nuclear Physics, Sect. Torino, via P. Giuria 1, 10125 Torino, Italy
| | - Valeria Bincoletto
- NIS Inter-Departmental Centre, via G. Quarello 15/a, 10135 Torino, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Torino, Piazza Nizza 44, 10126 Torino, Italy
| | - Lorenzo Mino
- NIS Inter-Departmental Centre, via G. Quarello 15/a, 10135 Torino, Italy
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Beatrice Zurletti
- Department of Drug Science and Technology, University of Torino, via P. Giuria 9, 10125, Torino, Italy.
| | - Barbara Stella
- Department of Drug Science and Technology, University of Torino, via P. Giuria 9, 10125, Torino, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, Piazza Nizza 44, 10126 Torino, Italy
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Torino, via P. Giuria 9, 10125, Torino, Italy.
| | - Federico Picollo
- Department of Physics, University of Torino, via P. Giuria 1, 10125 Torino, Italy.
- National Institute of Nuclear Physics, Sect. Torino, via P. Giuria 1, 10125 Torino, Italy
- NIS Inter-Departmental Centre, via G. Quarello 15/a, 10135 Torino, Italy
| |
Collapse
|
3
|
Ling X, Lu G, Zhang L, Zhang J, Fu H, Yan Z. Cotransport of nanoplastics and plastic additive bisphenol AF (BPAF) in unsaturated hyporheic zone: Coupling effects of surface functionalization and protein corona. WATER RESEARCH 2024; 256:121574. [PMID: 38593606 DOI: 10.1016/j.watres.2024.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The ecological risk of combined pollution from microplastics (MPs) and associated contaminants usually depends on their interactions and environmental behavior, which was also disturbed by varying surface modifications of MPs. In this study, the significance of surface functionalization and protein-corona on the cotransport of nanoplastics (NPs; 100 nm) and the related additive bisphenol AF (BPAF) was examined in simulated unsaturated hyporheic zone (quartz sand; 250-425 μm). The electronegative bovine serum albumin (BSA) and electropositive trypsin were chosen as representative proteins, while pristine (PNPs), amino-modified (ANPs), and carboxyl-modified NPs (CNPs) were representative NPs with different charges. The presence of BPAF inhibited the mobility of PNPs/CNPs, but enhanced the release of ANPs in hyporheic zone, which was mainly related to their hydrophobicity changes and electrostatic interactions. Meanwhile, the NPs with high mobility and strong affinity to BPAF became effective carriers, promoting the cotransport of BPAF by 16.4 %-26.4 %. The formation of protein-coronas altered the mobility of NPs alone and their cotransport with BPAF, exhibiting a coupling effect with functional groups. BSA-corona promoted the transport of PNPs/CNPs, but this promoting effect was weakened by the presence of BPAF via increasing particle aggregation and hydrophobicity. Inversely, trypsin-corona aggravated the deposition of PNPs/CNPs, but competition deposition sites and increased energy barrier caused by coexisting BPAF reversed this effect, facilitating the cotransport of trypsin-PNPs/CNPs in hyporheic zone. However, BPAF and protein-coronas synergistically promoted the mobility of ANPs, owing to competition deposition sites and decreased electrostatic attraction. Although all of the NPs with two protein-coronas reduced dissolved BPAF in the effluents via providing deposition sites, the cotransport of total BPAF was improved by the NPs with high mobility (BSA-PNPs/CNPs) or high affinity to BPAF (BSA/trypsin-ANPs). However, the trypsin-PNPs/CNPs inhibited the transport of BPAF due to their weak mobility and adsorption with BPAF. The results provide new insights into the role of varying surface modifications on NPs in the vertical cotransport of NPs and associated contaminants in unsaturated hyporheic zone.
Collapse
Affiliation(s)
- Xin Ling
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jiaqi Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China
| | - Heyun Fu
- School of the Environment, Nanjing University, Nanjing 210046, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, PR China.
| |
Collapse
|
4
|
Varzi V, Fratini E, Falconieri M, Giovannini D, Cemmi A, Scifo J, Di Sarcina I, Aprà P, Sturari S, Mino L, Tomagra G, Infusino E, Landoni V, Marino C, Mancuso M, Picollo F, Pazzaglia S. Nanodiamond Effects on Cancer Cell Radiosensitivity: The Interplay between Their Chemical/Physical Characteristics and the Irradiation Energy. Int J Mol Sci 2023; 24:16622. [PMID: 38068942 PMCID: PMC10706717 DOI: 10.3390/ijms242316622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Nanoparticles are being increasingly studied to enhance radiation effects. Among them, nanodiamonds (NDs) are taken into great consideration due to their low toxicity, inertness, chemical stability, and the possibility of surface functionalization. The objective of this study is to explore the influence of the chemical/physical properties of NDs on cellular radiosensitivity to combined treatments with radiation beams of different energies. DAOY, a human radioresistant medulloblastoma cell line was treated with NDs-differing for surface modifications [hydrogenated (H-NDs) and oxidized (OX-NDs)], size, and concentration-and analysed for (i) ND internalization and intracellular localization, (ii) clonogenic survival after combined treatment with different radiation beam energies and (iii) DNA damage and apoptosis, to explore the nature of ND-radiation biological interactions. Results show that chemical/physical characteristics of NDs are crucial in determining cell toxicity, with hydrogenated NDs (H-NDs) decreasing either cellular viability when administered alone, or cell survival when combined with radiation, depending on ND size and concentration, while OX-NDs do not. Also, irradiation at high energy (γ-rays at 1.25 MeV), in combination with H-NDs, is more efficient in eliciting radiosensitisation when compared to irradiation at lower energy (X-rays at 250 kVp). Finally, the molecular mechanisms of ND radiosensitisation was addressed, demonstrating that cell killing is mediated by the induction of Caspase-3-dependent apoptosis that is independent to DNA damage. Identifying the optimal combination of ND characteristics and radiation energy has the potential to offer a promising therapeutic strategy for tackling radioresistant cancers using H-NDs in conjunction with high-energy radiation.
Collapse
Affiliation(s)
- Veronica Varzi
- Physics Department, National Institute of Nuclear Physics, Section of Turin, University of Turin, Via P. Giuria 1, 10125 Turin, Italy; (V.V.); (P.A.); (S.S.)
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
| | - Emiliano Fratini
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| | - Mauro Falconieri
- Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy;
| | - Daniela Giovannini
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| | - Alessia Cemmi
- Innovative Nuclear Systems Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (J.S.); (I.D.S.)
| | - Jessica Scifo
- Innovative Nuclear Systems Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (J.S.); (I.D.S.)
| | - Ilaria Di Sarcina
- Innovative Nuclear Systems Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (J.S.); (I.D.S.)
| | - Pietro Aprà
- Physics Department, National Institute of Nuclear Physics, Section of Turin, University of Turin, Via P. Giuria 1, 10125 Turin, Italy; (V.V.); (P.A.); (S.S.)
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
| | - Sofia Sturari
- Physics Department, National Institute of Nuclear Physics, Section of Turin, University of Turin, Via P. Giuria 1, 10125 Turin, Italy; (V.V.); (P.A.); (S.S.)
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
| | - Lorenzo Mino
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
- Chemistry Department, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Giulia Tomagra
- Drug Science and Technology Department, University of Turin, Corso Raffaello 30, 10125 Turin, Italy;
| | - Erminia Infusino
- Medical Physics Laboratory, IRCCS Istituto Nazionale Tumori Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy; (E.I.); (V.L.)
| | - Valeria Landoni
- Medical Physics Laboratory, IRCCS Istituto Nazionale Tumori Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy; (E.I.); (V.L.)
| | - Carmela Marino
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| | - Federico Picollo
- Physics Department, National Institute of Nuclear Physics, Section of Turin, University of Turin, Via P. Giuria 1, 10125 Turin, Italy; (V.V.); (P.A.); (S.S.)
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| |
Collapse
|
5
|
Fraczek W, Kregielewski K, Wierzbicki M, Krzeminski P, Zawadzka K, Szczepaniak J, Grodzik M. A Comprehensive Assessment of the Biocompatibility and Safety of Diamond Nanoparticles on Reconstructed Human Epidermis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5600. [PMID: 37629892 PMCID: PMC10456456 DOI: 10.3390/ma16165600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Diamond nanoparticles, also known as nanodiamonds (NDs), exhibit remarkable, awe-inspiring properties that make them suitable for various applications in the field of skin care products. However, a comprehensive assessment of their compatibility with human skin, according to the irritation criteria established by the Organization for Economic Cooperation and Development (OECD), has not yet been conducted. The purpose of this study was to evaluate if diamond nanoparticles at a concentration of 25 μg/mL, incubated with reconstituted human epidermis (EpiDermTM) for 18 h, conform to the OECD TG439 standard used to classify chemical irritants. For this purpose, a cell viability test (MTT assay), histological assessment, and analysis of pro-inflammatory cytokine expression were performed. The results indicated that NDs had no toxic effect at the tested concentration. They also did not adversely affect tissue structure and did not lead to a simultaneous increase in protein and mRNA expression of the analyzed cytokines. These results confirm the safety and biocompatibility of NDs for application in skincare products, thereby creating a wide range of possibilities to exert an impact on the advancement of contemporary cosmetology in the future.
Collapse
Affiliation(s)
- Wiktoria Fraczek
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Kacper Kregielewski
- Faculty of Biology and Biotechnology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland;
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Patryk Krzeminski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Katarzyna Zawadzka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| | - Jaroslaw Szczepaniak
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland;
| | - Marta Grodzik
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences (WULS-SGGW), 02-787 Warsaw, Poland; (W.F.); (M.W.); (P.K.); (K.Z.)
| |
Collapse
|
6
|
Pavan C, Santalucia R, Escolano-Casado G, Ugliengo P, Mino L, Turci F. Physico-Chemical Approaches to Investigate Surface Hydroxyls as Determinants of Molecular Initiating Events in Oxide Particle Toxicity. Int J Mol Sci 2023; 24:11482. [PMID: 37511241 PMCID: PMC10380507 DOI: 10.3390/ijms241411482] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The study of molecular recognition patterns is crucial for understanding the interactions between inorganic (nano)particles and biomolecules. In this review we focus on hydroxyls (OH) exposed at the surface of oxide particles (OxPs) which can play a key role in molecular initiating events leading to OxPs toxicity. We discuss here the main analytical methods available to characterize surface OH from a quantitative and qualitative point of view, covering thermogravimetry, titration, ζ potential measurements, and spectroscopic approaches (NMR, XPS). The importance of modelling techniques (MD, DFT) for an atomistic description of the interactions between membranes/proteins and OxPs surfaces is also discussed. From this background, we distilled a new approach methodology (NAM) based on the combination of IR spectroscopy and bioanalytical assays to investigate the molecular interactions of OxPs with biomolecules and membranes. This NAM has been already successfully applied to SiO2 particles to identify the OH patterns responsible for the OxPs' toxicity and can be conceivably extended to other surface-hydroxylated oxides.
Collapse
Affiliation(s)
- Cristina Pavan
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10125 Torino, Italy
- Louvain Centre for Toxicology and Applied Pharmacology, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Rosangela Santalucia
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Guillermo Escolano-Casado
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Piero Ugliengo
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Lorenzo Mino
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| | - Francesco Turci
- Department of Chemistry, University of Torino, Via Giuria 7, 10125 Torino, Italy
- "G. Scansetti" Interdepartmental Centre for Studies on Asbestos and Other Toxic Particulates, University of Torino, 10125 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, 10125 Torino, Italy
| |
Collapse
|
7
|
Padrez Y, Golubewa L, Bahdanava A, Jankunec M, Matulaitiene I, Semenov D, Karpicz R, Kulahava T, Svirko Y, Kuzhir P. Nanodiamond surface as a photoluminescent pH sensor. NANOTECHNOLOGY 2023; 34:195702. [PMID: 36745919 DOI: 10.1088/1361-6528/acb94b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
A systematic spectroscopic characterization of highly homogeneous water suspensions of 'buckydiamonds' comprising sp3cubic nanodiamond (ND) core covered with disordered sp2shell densely decorated with oxygen-containing groups demonstrates the excitation-wavelength-dependent photoluminescence (PL) given by at least four types of specific structures on the ND surface (hydroxyl, C=O containing ketones, carboxylic anhydrides, and carboxyl groups). PL properties of NDs suspensions possess concentration-dependent behavior revealing tendency of NDs to agglomerate. PL of NDs has been found to be strongly sensitive to pH of the environment in wide range of pH values, i.e. 2-11. We disclosed the mechanisms of pH sensitivity of the 'buckydiamond' and proved that it can serve as all-optical sensor of tiny pH variations suitable for further exploitation for pH sensing locally in the area where NDs have been delivered for any purpose, e.g. bioimaging or therapeutic needs.
Collapse
Affiliation(s)
- Yaraslau Padrez
- Department of Molecular Compounds Physics, State research institute Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Lena Golubewa
- Department of Molecular Compounds Physics, State research institute Center for Physical Sciences and Technology, Vilnius, Lithuania
- Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Joensuu, Finland
| | - Anastasiya Bahdanava
- Department of Molecular Compounds Physics, State research institute Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Marija Jankunec
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Ieva Matulaitiene
- Department of Organic Chemistry, State research institute Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Dmitry Semenov
- School of Computing, Faculty of Science and Forestry, University of Eastern Finland, Kuopio, Finland
| | - Renata Karpicz
- Department of Molecular Compounds Physics, State research institute Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Tatsiana Kulahava
- Department of Molecular Compounds Physics, State research institute Center for Physical Sciences and Technology, Vilnius, Lithuania
| | - Yuri Svirko
- Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Joensuu, Finland
| | - Polina Kuzhir
- Department of Physics and Mathematics, Center for Photonics Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
8
|
Sulfonic Cryogels as Innovative Materials for Biotechnological Applications: Synthesis, Modification, and Biological Activity. Int J Mol Sci 2023; 24:ijms24032949. [PMID: 36769272 PMCID: PMC9917522 DOI: 10.3390/ijms24032949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Polymeric hydrogels based on sulfo-containing comonomers are promising materials for biotechnological application, namely, for use as a system for delivering water and minerals during seed germination in conditions of an unstable moisture zone. In this work, cryogels based on 3-sulfopropyl methacrylate and 2-hydroxyethyl methacrylate copolymers were obtained by the cryotropic gelation method. The morphology, specific surface area, and swelling behaviors of cryogels are found to depend on the total concentration of monomers in the reaction system and the content of the gel fraction in cryogels. Cryogels formed in the presence of nanodiamonds are shown to exhibit high biological activity during the germination of Lepidium sativum L. variety Ajur seeds, which manifests itself by stimulating seed germination and a significant increase in the raw weight of sprouts. These results indicate that sulfonic cryogels have a high potential to improve seed germination and plant growth, proving that such cryogels can be used as environmentally friendly materials for agricultural applications.
Collapse
|