1
|
Jin S, Yu Y, Zhang T, Xie D, Zheng Y, Wang C, Liu Y, Xia D. Surface modification strategies to reinforce the soft tissue seal at transmucosal region of dental implants. Bioact Mater 2024; 42:404-432. [PMID: 39308548 PMCID: PMC11415887 DOI: 10.1016/j.bioactmat.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Soft tissue seal around the transmucosal region of dental implants is crucial for shielding oral bacterial invasion and guaranteeing the long-term functioning of implants. Compared with the robust periodontal tissue barrier around a natural tooth, the peri-implant mucosa presents a lower bonding efficiency to the transmucosal region of dental implants, due to physiological structural differences. As such, the weaker soft tissue seal around the transmucosal region can be easily broken by oral pathogens, which may stimulate serious inflammatory responses and lead to the development of peri-implant mucositis. Without timely treatment, the curable peri-implant mucositis would evolve into irreversible peri-implantitis, finally causing the failure of implantation. Herein, this review has summarized current surface modification strategies for the transmucosal region of dental implants with improved soft tissue bonding capacities (e.g., improving surface wettability, fabricating micro/nano topographies, altering the surface chemical composition and constructing bioactive coatings). Furthermore, the surfaces with advanced soft tissue bonding abilities can be incorporated with antibacterial properties to prevent infections, and/or with immunomodulatory designs to facilitate the establishment of soft tissue seal. Finally, we proposed future research orientations for developing multifunctional surfaces, thus establishing a firm soft tissue seal at the transmucosal region and achieving the long-term predictability of dental implants.
Collapse
Affiliation(s)
- Siqi Jin
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Yameng Yu
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| | - Ting Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Daping Xie
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-2 Kumamoto, 860-8555, Japan
| | - Chunming Wang
- State Key Laboratory in Quality Research of Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, 999078, China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Dandan Xia
- Department of Dental Materials, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, 100081, China
| |
Collapse
|
2
|
Histologic Evaluation of Soft Tissues around Dental Implant Abutments: A Narrative Review. MATERIALS 2022; 15:ma15113811. [PMID: 35683109 PMCID: PMC9181750 DOI: 10.3390/ma15113811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 01/28/2023]
Abstract
The basis for dental implant success comes not only with the titanium implant osseointegration but also depends on other factors such as the development of a soft tissue barrier, which protects the peri-implant bone from the oral environment. The characteristics of surfaces in contact with peri-implant soft tissues may affect the capacity of peri-implant mucosal cells to create a tight seal around the implant, thus influencing long-term implant success. Many histological studies on animals have been conducted on different materials to better understand their influence on peri-implant soft tissues, with the limitation that results from animal studies cannot be fully translated in humans. The aim of this review paper was to analyze the literature focusing on histological clinical studies in humans which have examined different materials or different surface treatments and their effects on peri-implant soft tissues. The research was conducted according to the following PICO question: “Do different implant/abutment materials affect peri-implant soft tissues adhesion and health?”. Nine articles were analyzed in this review. The results of this review show the influence of different abutment materials on the peri-implant soft tissues, and the need of further research regarding the effect that abutment materials, surface treatments, and surface properties have on soft tissues.
Collapse
|
3
|
Gulati K. Nano-Engineering Solutions for Dental Implant Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:272. [PMID: 35055289 PMCID: PMC8779811 DOI: 10.3390/nano12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 02/05/2023]
Abstract
This Special Issue of Nanomaterials explores the recent advances and trends with respect to nano-engineered strategies towards dental implant applications [...].
Collapse
Affiliation(s)
- Karan Gulati
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
| |
Collapse
|