1
|
de With G. Melting Is Well-Known, but Is It Also Well-Understood? Chem Rev 2023; 123:13713-13795. [PMID: 37963286 PMCID: PMC10722469 DOI: 10.1021/acs.chemrev.3c00489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/16/2023]
Abstract
Contrary to continuous phase transitions, where renormalization group theory provides a general framework, for discontinuous phase transitions such a framework seems to be absent. Although the thermodynamics of the latter type of transitions is well-known and requires input from two phases, for melting a variety of one-phase theories and models based on solids has been proposed, as a generally accepted theory for liquids is (yet) missing. Each theory or model deals with a specific mechanism using typically one of the various defects (vacancies, interstitials, dislocations, interstitialcies) present in solids. Furthermore, recognizing that surfaces are often present, one distinguishes between mechanical or bulk melting and thermodynamic or surface-mediated melting. After providing the necessary preliminaries, we discuss both types of melting in relation to the various defects. Thereafter we deal with the effect of pressure on the melting process, followed by a discussion along the line of type of materials. Subsequently, some other aspects and approaches are dealt with. An attempt to put melting in perspective concludes this review.
Collapse
Affiliation(s)
- Gijsbertus de With
- Laboratory of Physical Chemistry, Eindhoven University of Technology, Het Kranenveld 14, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
2
|
Chen YJ, Schmidl G, Dellith A, Gawlik A, Jia G, Bocklitz T, Wu X, Plentz J, Huang JS. Impact of thermal annealing and laser treatment on the morphology and optical responses of mono- and bi-metallic plasmonic honeycomb lattice. NANOSCALE 2023; 15:16626-16635. [PMID: 37772449 DOI: 10.1039/d3nr03522k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Plasmonic nanoparticle arrays with a specific lattice arrangement can support surface lattice resonances (SLRs). SLR exhibits a sharp spectral peak and finds many applications including optical sensing and plasmonic lasers. To optimize SLR for application, a robust method that allows the mass production of plasmonic nanoparticle arrays with refined particle morphology and well-defined lattice arrangement is required. In this work, we combine nanosphere lithography (NSL) with thermal annealing or nanosecond-pulsed laser treatment to refine plasmonic nanoparticles in a honeycomb lattice. We comparatively study the effects of the two treatment methods on the particle morphology and lattice arrangement of mono (Ag and Pd) and bi-metallic (Ag-Pd) nanoparticle lattices. In general, thermal annealing preserves the lattice arrangement but fairly changes the particle roundness, while laser treatment produces particles with varying morphologies and spatial distribution. We also theoretically and experimentally investigate the optical responses of Ag nanoparticle lattices produced by different treatment methods. The observed difference in spectra can be attributed to the varying particle morphology, which shifts the localized surface plasmon resonance differently, resulting in a significant change in SLR. These findings provide valuable insights for optimizing plasmonic nanoparticle arrays for various applications.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein Straße 9, 07745 Jena, Germany.
| | - Gabriele Schmidl
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein Straße 9, 07745 Jena, Germany.
| | - Andrea Dellith
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein Straße 9, 07745 Jena, Germany.
| | - Annett Gawlik
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein Straße 9, 07745 Jena, Germany.
| | - Guobin Jia
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein Straße 9, 07745 Jena, Germany.
| | - Thomas Bocklitz
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
- Institute of Computer Science, Faculty of Mathematics, Physics & Computer Science, University Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Xiaofei Wu
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein Straße 9, 07745 Jena, Germany.
| | - Jonathan Plentz
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein Straße 9, 07745 Jena, Germany.
| | - Jer-Shing Huang
- Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Albert-Einstein Straße 9, 07745 Jena, Germany.
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Member of the Leibniz Centre for Photonics in Infection Research (LPI), Helmholtzweg 4, 07743 Jena, Germany
- Research Center for Applied Sciences, Academia Sinica, 128 Sec. 2, Academia Road, Nankang District, Taipei 11529, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, No. 1001, Daxue Road, East District, Hsinchu 30010, Taiwan
| |
Collapse
|
3
|
Guo L, Pan L, Li Z. Study on the Sliding Tribological Behavior of Oleic Acid-Modified MoS 2 under Boundary Lubrication. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14562-14572. [PMID: 37807858 DOI: 10.1021/acs.langmuir.3c01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The effects of MoS2 and MoS2 modified by adding oleic acid (OA) on the friction properties of lithium-based grease under boundary lubrication conditions are studied by molecular dynamics (MD) simulation and experiment. A rough wall boundary lubrication MD model with peaks and grooves is established to simulate the mechanical properties and lubrication effects of three lubrication systems on rough walls for the relative shear velocity between the two solid walls of 5 m/s at 500 MPa. The stress, wear amount, friction force, normal pressure, and friction heat of the friction surface are quantitively calculated. Simultaneously, a Retc friction and wear testing machine is used to measure the friction coefficient under different concentrations of additives and different pressures. The results show that the grease added with MoS2 can reduce friction, wear, and the temperature between friction pairs. However, under high pressure and shear, MoS2 can easily agglomerate and accumulate in the pits, reducing the lubricating effect. At the same time, since OA-modified MoS2 can reduce agglomeration, the modified MoS2 is adsorbed on the metal wall surface, forming a stable lubricant film. The main contributions of this article can be found in combining MD simulation and experimentation, establishing the connection between micronano structures and macroscopic properties, exploring the mechanism of the influence of wall roughness and particle size on the friction performance of lubricating oil, and providing a theory for predicting and developing high-performance new lubricating grease.
Collapse
Affiliation(s)
- Liming Guo
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian 350108, China
- Fuzhou Friction and Lubrication Industry Technology Innovation Center, Fuzhou, Fujian 350108, China
| | - Ling Pan
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian 350108, China
- Fuzhou Friction and Lubrication Industry Technology Innovation Center, Fuzhou, Fujian 350108, China
| | - Zhi Li
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian 350108, China
- Fuzhou Friction and Lubrication Industry Technology Innovation Center, Fuzhou, Fujian 350108, China
| |
Collapse
|
4
|
Mainali BP, Pattadar DK, Sharma JN, Zamborini FP. Electrochemical Analysis of the Thermal Stability of 0.9-4.1 nm Diameter Gold Nanoclusters. Anal Chem 2023. [PMID: 37506045 DOI: 10.1021/acs.analchem.3c01404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Here we report the thermal properties of weakly stabilized 0.9, 1.6, and 4.1 nm Au nanoparticles (NPs)/nanoclusters (NCs) attached to indium-tin-oxide- or fluorine-doped-tin-oxide-coated glass electrodes (glass/ITO or glass/FTO). The peak oxidation potential (Ep) for Au measured by anodic stripping voltammetry (ASV) is indicative of the NP/NC size. Heating leads to a positive shift in Ep due to an increase in NP/NC size from thermal ripening. The size transition temperature (Tt) decreases with decreasing NP/NC size following the order of 4.1 nm (509 °C) > 1.6 nm (132 °C) > 0.9 nm (90 °C/109 °C, two transitions) as compared to the bulk melting point (Tm,b) for Au of 1064 °C. The Tt generally agrees with models describing the size-dependent melting point of Au NPs (Tm,NP) for 4.1 and 1.6 nm diameter Au NPs but is higher than the models for 0.9 nm Au NCs. Scanning electron microscopy (SEM) and UV-vis size analysis confirm the electrochemical results. The thermal stability of electrode-supported metal NPs/NCs is important for their effective use in catalysis, sensing, nanoelectronics, photovoltaics, and other applications.
Collapse
Affiliation(s)
- Badri P Mainali
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Dhruba K Pattadar
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Jay N Sharma
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Francis P Zamborini
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
5
|
Castillo E, Njuki M, Pasha AF, Dimitrov N. Copper-Based Nanomaterials for Fine-Pitch Interconnects in Microelectronics. Acc Chem Res 2023. [PMID: 37289991 DOI: 10.1021/acs.accounts.3c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
ConspectusNanostructured copper-based materials have emerged as a new generation of robust architectures for realizing high-performing and reliable interconnection in modern electronic packaging. As opposed to traditional interconnects, nanostructured materials offer better compliance during the packaging assembly process. Due to the high surface area-to-volume ratio of nanomaterials, they also enable joint formation by sintering through thermal compression at much lower temperatures compared to bulk counterparts. Nanoporous Cu (np-Cu) films have been employed in electronic packaging as materials that facilitate a chip-to-substrate interconnection, realized by a Cu-on-Cu bonding after sintering.In this Account, we discuss the use of self-supported np-Cu films for low-temperature joint formation. The novelty of this work comes from the incorporation of tin (Sn) into the np-Cu structure, thus ensuring lower sintering temperatures with a goal of producing Cu-Sn intermetallic alloy-based joints between two Cu substrates. The incorporation of Sn is done using an all-electrochemical bottom-up approach that involves the conformal coating of fine-structured np-Cu (initially formed by dealloying of Cu-Zn alloys) with a thin layer of Sn.This Account provides insight on existing technologies for using nanostructured films as materials for interconnects as well as the optimization studies for the Sn-coating processes as a new alternative approach. The applicability of the synthesized Cu-Sn nanomaterials for low-temperature joint formation is also discussed. To realize this new approach, the Sn-coating process is administered by a galvanic pulse plating technique, which is optimized to preserve the porosity in the structure with a Cu/Sn atomic ratio that allows for the formation of the Cu6Sn5 intermetallic compound (IMC). Nanomaterials obtained using this approach are subjected to joint formation by sintering at temperatures between 300 and 200 °C under 20 MPa pressure in forming gas atmosphere. Cross-section characterization of the formed joints postsintering reveals densified bonds with minimal porosity that consist predominantly of the Cu3Sn IMC. Furthermore, these joints are less prone to structural inconsistencies compared to existing joints formed using purely np-Cu. The results presented in this Account provide a glimpse into a facile and cost-effective approach for synthesizing nanostructured Cu-Sn films and illustrate their applicability as new interconnect materials.
Collapse
Affiliation(s)
- Ezer Castillo
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000 Binghamton, New York 13902-6000, USA
| | - Michael Njuki
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000 Binghamton, New York 13902-6000, USA
| | - Abdullah Faisal Pasha
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000 Binghamton, New York 13902-6000, USA
| | - Nikolay Dimitrov
- Department of Chemistry, State University of New York at Binghamton, P.O. Box 6000 Binghamton, New York 13902-6000, USA
| |
Collapse
|
6
|
Indhu AR, Keerthana L, Dharmalingam G. Plasmonic nanotechnology for photothermal applications - an evaluation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:380-419. [PMID: 37025366 PMCID: PMC10071519 DOI: 10.3762/bjnano.14.33] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The application of plasmonic nanoparticles is motivated by the phenomenon of surface plasmon resonance. Owing to the tunability of optothermal properties and enhanced stability, these nanostructures show a wide range of applications in optical sensors, steam generation, water desalination, thermal energy storage, and biomedical applications such as photothermal (PT) therapy. The PT effect, that is, the conversion of absorbed light to heat by these particles, has led to thriving research regarding the utilization of plasmonic nanoparticles for a myriad of applications. The design of conventional nanomaterials for PT conversion has focussed predominantly on the manipulation of photon absorption through bandgap engineering, doping, incorporation, and modification of suitable matrix materials. Plasmonic nanomaterials offer an alternative and attractive approach in this regard, through the flexibility in the excitation of surface plasmons. Specific advantages are the considerable improved bandwidth of the absorption, a higher efficiency of photon absorption, facile tuning, as well as flexibility in the synthesis of plasmonic nanomaterials. This review of plasmonic PT (PPT) research begins with a theoretical discussion on the plasmonic properties of nanoparticles by means of the quasi-static approximation, Mie theory, Gans theory, generic simulations on common plasmonic material morphologies, and the evaluation processes of PT performance. Further, a variety of nanomaterials and material classes that have potential for PPT conversion are elucidated, such as plasmonic metals, bimetals, and metal-metal oxide nanocomposites. A detailed investigation of the essential, but often ignored, concept of thermal, chemical, and aggregation stability of nanoparticles is another part of this review. The challenges that remain, as well as prospective directions and chemistries, regarding nanomaterials for PT conversion are pondered on in the final section of the article, taking into account the specific requirements from different applications.
Collapse
Affiliation(s)
- A R Indhu
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore-641004, India
| | - L Keerthana
- Plasmonic Nanomaterials Laboratory, PSG Institute of Advanced Studies, Coimbatore-641004, India
| | | |
Collapse
|
7
|
Kang CW, Park J, Kim GH, Ko KC, Son SU. Hexagonal Carbon Nanoplates Decorated with Layer-Engineered MoS 2: High-Performance Cathode Materials for Zinc-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7887-7898. [PMID: 36728367 DOI: 10.1021/acsami.2c14951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hexagonal carbon nanoplates bearing MoS2 (HCN@MoS2) were synthesized using two-dimensional (2D) microporous organic polymers as templating materials. The layer number of MoS2 in HCN@MoS2 and the 2D morphology of composites were critical factors to achieve high-performance cathode materials for aqueous zinc-ion batteries. The best cathode performance was obtained with HCN@MoS2 bearing 2-3 layered MoS2 (HCN@MoS2-2), showing excellent discharge capacities of 602 mAh/g (@50 mA/g), 498 mAh/g (@0.1 A/g), and 328 mAh/g (@1 A/g). The promising electrochemical performance of HCN@MoS2-2 is attributable to the facilitated insertion of zinc ions into 2-3 layered MoS2 due to the reduced lattice energy and the efficient electrochemical utilization of composite materials.
Collapse
Affiliation(s)
- Chang Wan Kang
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Jina Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| | - Gye Hong Kim
- Department of Earth Systems and Environmental Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Kyoung Chul Ko
- Department of Chemistry Education, Chonnam National University, Gwangju 61186, Korea
| | - Seung Uk Son
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
8
|
Dai X, Liao Y, Yang C, Zhang Y, Feng M, Tian Y, Qu Q, Sheng M, Li Z, Peng X, Cen S, Shi X. Diammonium Glycyrrhizinate-Based Micelles for Improving the Hepatoprotective Effect of Baicalin: Characterization and Biopharmaceutical Study. Pharmaceutics 2022; 15:pharmaceutics15010125. [PMID: 36678754 PMCID: PMC9864020 DOI: 10.3390/pharmaceutics15010125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 01/01/2023] Open
Abstract
Saponins are an important class of surface-active substances. When formulated as an active ingredient or co-used with other drugs, the effect of their surface activity on efficacy or safety must be considered. In this paper, diammonium glycyrrhizinate (DG), a clinical hepatoprotective drug that has long been used as a biosurfactant, was taken as the research object to study its combined hepatoprotective effect with baicalin (BAI). Animal experiments proved that the preparation of DG and BAI integrated into micelles (BAI-DG Ms) had a better protective effect on acute liver injury caused by carbon tetrachloride than the direct combined use of the two. From the perspective of biopharmaceutics, the synergistic mechanism of BAI-DG Ms was further explored. The results showed that after forming BAI-DG Ms with DG, the solubility of BAI increased by 4.75 to 6.25 times, and the cumulative percentage release in the gastrointestinal tract also increased by 2.42 times. In addition, the negatively charged BAI-DG Ms were more likely to penetrate the mucus layer and be absorbed by endocytosis. These findings provide support for the rational application of glycyrrhizin, and other saponins.
Collapse
Affiliation(s)
- Xingxing Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102488, China
| | - Yuyao Liao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Cuiting Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yingying Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Minfang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuting Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mengke Sheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Zhixun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shuai Cen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing 102488, China
- Correspondence:
| |
Collapse
|