1
|
Bandaru S, Arora D, Ganesh KM, Umrao S, Thomas S, Bhaskar S, Chakrabortty S. Recent Advances in Research from Nanoparticle to Nano-Assembly: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1387. [PMID: 39269049 PMCID: PMC11397018 DOI: 10.3390/nano14171387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024]
Abstract
The careful arrangement of nanomaterials (NMs) holds promise for revolutionizing various fields, from electronics and biosensing to medicine and optics. This review delves into the intricacies of nano-assembly (NA) techniques, focusing on oriented-assembly methodologies and stimuli-dependent approaches. The introduction provides a comprehensive overview of the significance and potential applications of NA, setting the stage for review. The oriented-assembly section elucidates methodologies for the precise alignment and organization of NMs, crucial for achieving desired functionalities. The subsequent section delves into stimuli-dependent techniques, categorizing them into chemical and physical stimuli-based approaches. Chemical stimuli-based self-assembly methods, including solvent, acid-base, biomolecule, metal ion, and gas-induced assembly, are discussed in detail by presenting examples. Additionally, physical stimuli such as light, magnetic fields, electric fields, and temperature are examined for their role in driving self-assembly processes. Looking ahead, the review outlines futuristic scopes and perspectives in NA, highlighting emerging trends and potential breakthroughs. Finally, concluding remarks summarize key findings and underscore the significance of NA in shaping future technologies. This comprehensive review serves as a valuable resource for researchers and practitioners, offering insights into the diverse methodologies and potential applications of NA in interdisciplinary research fields.
Collapse
Affiliation(s)
- Shamili Bandaru
- Department of Chemistry, SRM University AP─Andhra Pradesh, Mangalagiri 522240, Andhra Pradesh, India
| | - Deepshika Arora
- Engineering Product Development, Singapore University of Technology and Design (SUTD), 8 Somapah Road, Singapore 487372, Singapore
| | - Kalathur Mohan Ganesh
- Star Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Sri Sathya Sai, Puttaparthi 515134, Andhra Pradesh, India
| | - Saurabh Umrao
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Seemesh Bhaskar
- Nick Holonyak Jr. Micro and Nanotechnology Laboratory (HMNTL), University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sabyasachi Chakrabortty
- Department of Chemistry, SRM University AP─Andhra Pradesh, Mangalagiri 522240, Andhra Pradesh, India
| |
Collapse
|
2
|
Cui L, Zhang L, Li Z, Jing Z, Huang L, Zeng H. Giant enhancement of fluorescence resonance energy transfer based on nanoporous gold with small amount of residual silver. NANOTECHNOLOGY 2024; 35:195709. [PMID: 38241734 DOI: 10.1088/1361-6528/ad20a0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
Fluorescence resonance energy transfer (FRET) was found strongly enhanced by plasmon resonance. In this work, Nanoporous Gold with small amount of residual silver was used to form nanoporous gold/organic molecular layer compound with PSS and PAH. The ratio of its specific gold and silver content is achieved by controlling the time of its dealloying. Layered films of polyelectrolyte multilayers were assembled between the donor-acceptor pairs and NPG films to control distance. The maximum of FRET enhancement of 80-fold on the fluorescence intensity between the donor-acceptor pairs (CFP-YFP) is observed at a distance of ∼10.5 nm from the NPG film. This Nanoporous Gold with small amount of residual silver not only enhanced FRET 4-fold more than nanoporous gold of only gold content almost, but also effectively realized the regulation of FRET enhancement. The ability to precisely measure and regulate the enhancement of FRET enables the rational selection of plasmonic nanotransducer dimensions for the particular biosensing application.
Collapse
Affiliation(s)
- Lianmin Cui
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Ling Zhang
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zhexiao Li
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Zhiyu Jing
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, People's Republic of China
| | - Luyi Huang
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, People's Republic of China
| | - Heping Zeng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, People's Republic of China
| |
Collapse
|
3
|
Azadinia M, Davidson-Hall T, Chung DS, Ghorbani A, Samaeifar F, Chen J, Chun P, Lyu Q, Cotella G, Aziz H. Inverted Solution-Processed Quantum Dot Light-Emitting Devices with Wide Band Gap Quantum Dot Interlayers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23631-23641. [PMID: 37141421 DOI: 10.1021/acsami.3c02356] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Despite its benefits for facilitating device fabrication, utilization of a polymeric hole transport layer (HTL) in inverted quantum dots (QDs) light-emitting devices (IQLEDs) often leads to poor device performance. In this work, we find that the poor performance arises primarily from electron leakage, inefficient charge injection, and significant exciton quenching at the HTL interface in the inverted architecture and not due to solvent damage effects as is widely believed. We also find that using a layer of wider band gap QDs as an interlayer (IL) in between the HTL and the main QDs' emission material layer (EML) can facilitate hole injection, suppress electron leakage, and reduce exciton quenching, effectively mitigating the poor interface effects and resulting in high electroluminescence performance. Using an IL in IQLEDs with a solution-processed poly(9,9-dioctylfluorene-alt-N-(4-sec-butylphenyl)-diphenylamine) (TFB), HTL improves the efficiency by 2.85× (from 3 to 8.56%) and prolongs the lifetime by 9.4× (from 1266 to 11,950 h at 100 cd/m2), which, to the best of our knowledge, is the longest lifetime for an R-IQLED with a solution-coated HTL. Measurements on single-carrier devices reveal that while electron injection becomes easier as the band gap of the QDs decreases, hole injection surprisingly becomes more difficult, indicating that EMLs of QLEDs are more electron-rich in the case of red devices and more hole-rich in the case of blue devices. Ultraviolet photoelectron spectroscopy measurements verify that blue QDs have a shallower valence band energy than their red counterparts, corroborating these conclusions. The findings in this work, therefore, provide not only a simple approach for achieving high performance in IQLEDs with solution-coated HTLs but also novel insights into charge injection and its dependence on QDs' band gap as well as into different HTL interface properties of the inverted versus upright architecture.
Collapse
Affiliation(s)
- Mohsen Azadinia
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Tyler Davidson-Hall
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Dong Seob Chung
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Atefeh Ghorbani
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Fatemeh Samaeifar
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Junfei Chen
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Peter Chun
- Ottawa IC Laboratory, Huawei Canada, 19 Allstate Parkway, Markham, Ontario L3R 5B4, Canada
| | - Quan Lyu
- Cambridge Research Centre, Huawei Technologies Research & Development (UK) Ltd., Cambridge CB4 0FY, U.K
| | - Giovanni Cotella
- Ipswich Research Centre, Huawei Technologies Research & Development (UK) Ltd., Phoenix House (B55), Adastral Park, Ipswich IP5 3RE, U.K
| | - Hany Aziz
- Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Special Issue: State-of-the-Art Nanophotonic and Optical Nanomaterials in China. NANOMATERIALS 2022; 12:nano12132270. [PMID: 35808106 PMCID: PMC9268546 DOI: 10.3390/nano12132270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022]
Abstract
In recent years, the fields of nanophotonics and nano-optics have been greatly fueled by rapid advancements in photonic science and technology, especially by the emergence of novel optical nanomaterials and new functional nanostructures [...]
Collapse
|
5
|
Hamza AO, Bouillard JSG, Adawi AM. Förster Resonance Energy Transfer Rate and Efficiency in Plasmonic Nanopatch Antennas. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Jean-Sebastien G. Bouillard
- University of Hull Physics and Mathematics Cottingham RoadCottingham Road, HullHull Hu6 7RX Hull UNITED KINGDOM
| | - Ali M Adawi
- Hull university Physics and mathematics Cottingham Road Hu6 7RX Hull UNITED KINGDOM
| |
Collapse
|