1
|
Han P, Johnson N, Abdal-Hay A, Moran CS, Salomon C, Ivanovski S. Effects of periodontal cells-derived extracellular vesicles on mesenchymal stromal cell function. J Periodontal Res 2023; 58:1188-1200. [PMID: 37605485 DOI: 10.1111/jre.13171] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/21/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE To enrich and compare three extracellular vesicles-EV subtypes (apoptotic bodies, microvesicles and small EV) from three periodontal cells (periodontal ligament cells-PDLCs, alveolar bone-derived osteoblasts-OBs and gingival fibroblasts-GFs), and assess uptake and cell function changes in buccal fat pad-derived mesenchymal stromal cells (BFP-MSCs). BACKGROUND Periodontal cells such as PDLCs, OBs and GFs have the potential to enhance bone and periodontal regeneration, but face significant challenges, such as the regulatory and cost implications of in vitro cell culture and storage. To address these challenges, it is important to explore alternative 'cell-free' strategies, such as extracellular vesicles which have emerged as promising tools in regenerative medicine, to facilitate osteogenic differentiation and bone regeneration. METHODS AND MATERIALS Serial centrifuges at 2600 and 16 000 g were used to isolate apoptotic bodies and microvesicles respectively. Small EV-sEV was enriched by our in-house size exclusion chromatography (SEC). The cellular uptake, proliferation, migration and osteogenic/adipogenic differentiation genes were analysed after EVs uptake in BFP-MSCs. RESULTS Three EV subtypes were enriched and characterised by morphology, particle size and EV-associated protein expression-CD9. Cellular uptake of the three EVs subtypes was observed in BFP-MSCs for up to 7 days. sEV from the three periodontal cells promoted proliferation, migration and osteogenic gene expression. hOBs-sEV showed superior levels of osteogenesis markers compared to that hPDLCs-sEV and hGFs-sEV, while hOBs-16k EV promoted adipogenic gene expression compared to that from hPDLCs and hGFs. CONCLUSIONS Our proof-of-concept data demonstrate that hOBs-sEV might be an alternative cell-free therapeutic for bone tissue engineering.
Collapse
Affiliation(s)
- Pingping Han
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, Queensland, Australia
- School of Dentistry, University of Queensland, Herston, Queensland, Australia
| | - Nigel Johnson
- School of Dentistry, University of Queensland, Herston, Queensland, Australia
| | - Abdalla Abdal-Hay
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena, Egypt
- Faculty of Industry and Energy Technology, Mechatronics Technology Program, New Cairo Technological University, New Cairo, Egypt
| | - Corey S Moran
- School of Dentistry, University of Queensland, Herston, Queensland, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, Royal Brisbane and Women's Hospital, The University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia
| | - Sašo Ivanovski
- School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), The University of Queensland, Brisbane, Queensland, Australia
- School of Dentistry, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
2
|
RANDHAWA AAYUSHI, DEB DUTTA SAYAN, GANGULY KEYA, V. PATIL TEJAL, LUTHFIKASARI RACHMI, LIM KITAEK. Understanding cell-extracellular matrix interactions for topology-guided tissue regeneration. BIOCELL 2023. [DOI: 10.32604/biocell.2023.026217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
3
|
Karakaya E, Erdogan YK, Arslan TS, Arslan YE, Odabas S, Ercan B, Emregul E, Derkus B. Decellularized Bone Extracellular Matrix-Coated Electrospun PBAT Microfibrous Membranes with Cell Instructive Ability and Improved Bone Tissue Forming Capacity. Macromol Biosci 2022; 22:e2200303. [PMID: 36129099 DOI: 10.1002/mabi.202200303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/23/2022] [Indexed: 01/15/2023]
Abstract
Current approaches to develop bone tissue engineering scaffolds have some limitations and shortcomings. They mainly suffer from combining mechanical stability and bioactivity on the same platform. Synthetic polymers are able to produce mechanically stable sturctures with fibrous morphology when they are electrospun, however, they cannot exhibit bioactivity, which is crucial for tissue engineering and regenerative medicine. One current strategy to bring bioactivity in synthetic materials is to combine extracellular matrix (ECM)-sourced materials with biologically inert synthetic materials. ECM-sourced materials without any modifications are mechanically unstable; therefore, reinforcing them with mechanically stable platforms is indispensable. In order to overcome this bifacial problem, we have demonstrated that poly(butylene adipate-co-terephthalate) (PBAT) electrospun microfibrous membranes can be successfully modified with decellularized bone ECM to endow fibers with bioactive hydrogel and mimic natural micro-features of the native bone tissue. The developed structures have been shown to support osteogenesis, confirmed by histochemical staining and gene expression studies. Furthermore, ECM-coated PBAT fibers, when they were aligned, supplied an improved level of osteogenesis. The strategy demonstrated can be adapted to any other tissues, and the emerging microfibrous, mechanically stable, and bioactive materials can find implications in the specific fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Ece Karakaya
- Personalized Medicine and Biosensing Research (PMBR) Laboratory, Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Yasar Kemal Erdogan
- Biomedical Engineering Program, Middle East Technical University, Ankara, 06800, Turkey.,Department of Biomedical Engineering, Isparta University of Applied Science, Isparta, 32260, Turkey
| | - Tugba Sezgin Arslan
- Personalized Medicine and Biosensing Research (PMBR) Laboratory, Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of Bioengineering, Faculty of Engineering, Canakkale Onsekiz Mart University, Canakkale, 17100, Turkey
| | - Sedat Odabas
- Biomaterials and Tissue Engineering Laboratory (BteLAB), Department of Chemistry, Faculty of Science, Ankara University, Besevler, Ankara, 06560, Turkey
| | - Batur Ercan
- Biomedical Engineering Program, Middle East Technical University, Ankara, 06800, Turkey.,Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara, 06800, Turkey
| | - Emel Emregul
- Personalized Medicine and Biosensing Research (PMBR) Laboratory, Department of Chemistry, Faculty of Science, Ankara University, Ankara, 06560, Turkey
| | - Burak Derkus
- Stem Cell Research Lab, Department of Chemistry, Faculty of Science, Ankara University, Besevler, Ankara, 06560, Turkey
| |
Collapse
|
4
|
Topographic Orientation of Scaffolds for Tissue Regeneration: Recent Advances in Biomaterial Design and Applications. Biomimetics (Basel) 2022; 7:biomimetics7030131. [PMID: 36134935 PMCID: PMC9496066 DOI: 10.3390/biomimetics7030131] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/30/2022] [Accepted: 09/08/2022] [Indexed: 11/17/2022] Open
Abstract
Tissue engineering to develop alternatives for the maintenance, restoration, or enhancement of injured tissues and organs is gaining more and more attention. In tissue engineering, the scaffold used is one of the most critical elements. Its characteristics are expected to mimic the native extracellular matrix and its unique topographical structures. Recently, the topographies of scaffolds have received increasing attention, not least because different topographies, such as aligned and random, have different repair effects on various tissues. In this review, we have focused on various technologies (electrospinning, directional freeze-drying, magnetic freeze-casting, etching, and 3-D printing) to fabricate scaffolds with different topographic orientations, as well as discussed the physicochemical (mechanical properties, porosity, hydrophilicity, and degradation) and biological properties (morphology, distribution, adhesion, proliferation, and migration) of different topographies. Subsequently, we have compiled the effect of scaffold orientation on the regeneration of vessels, skin, neural tissue, bone, articular cartilage, ligaments, tendons, cardiac tissue, corneas, skeletal muscle, and smooth muscle. The compiled information in this review will facilitate the future development of optimal topographical scaffolds for the regeneration of certain tissues. In the majority of tissues, aligned scaffolds are more suitable than random scaffolds for tissue repair and regeneration. The underlying mechanism explaining the various effects of aligned and random orientation might be the differences in “contact guidance”, which stimulate certain biological responses in cells.
Collapse
|
5
|
Gulati K, Abdal-hay A, Ivanovski S. Novel Nano-Engineered Biomaterials for Bone Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:333. [PMID: 35159677 PMCID: PMC8839239 DOI: 10.3390/nano12030333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/25/2023]
Abstract
This Special Issue of Nanomaterials explores the recent advances relating to nano-engineered strategies for biomaterials and implants in bone tissue engineering [...].
Collapse
Affiliation(s)
- Karan Gulati
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
| | - Abdalla Abdal-hay
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
| | - Sašo Ivanovski
- Centre for Orofacial Regeneration, Reconstruction and Rehabilitation (COR3), School of Dentistry, The University of Queensland, 288 Herston Road, Herston, QLD 4006, Australia
| |
Collapse
|
6
|
Han P, Gomez GA, Duda GN, Ivanovski S, Poh PS. Scaffold geometry modulation of mechanotransduction and its influence on epigenetics. Acta Biomater 2022; 163:259-274. [PMID: 35038587 DOI: 10.1016/j.actbio.2022.01.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/03/2023]
Abstract
The dynamics of cell mechanics and epigenetic signatures direct cell behaviour and fate, thus influencing regenerative outcomes. In recent years, the utilisation of 2D geometric (i.e. square, circle, hexagon, triangle or round-shaped) substrates for investigating cell mechanics in response to the extracellular microenvironment have gained increasing interest in regenerative medicine due to their tunable physicochemical properties. In contrast, there is relatively limited knowledge of cell mechanobiology and epigenetics in the context of 3D biomaterial matrices, i.e., hydrogels and scaffolds. Scaffold geometry provides biophysical signals that trigger a nucleus response (regulation of gene expression) and modulates cell behaviour and function. In this review, we explore the potential of additive manufacturing to incorporate multi length-scale geometry features on a scaffold. Then, we discuss how scaffold geometry direct cell and nuclear mechanosensing. We further discuss how cell epigenetics, particularly DNA/histone methylation and histone acetylation, are modulated by scaffold features that lead to specific gene expression and ultimately influence the outcome of tissue regeneration. Overall, we highlight that geometry of different magnitude scales can facilitate the assembly of cells and multicellular tissues into desired functional architectures through the mechanotransduction pathway. Moving forward, the challenge confronting biomedical engineers is the distillation of the vast knowledge to incorporate multiscaled geometrical features that would collectively elicit a favourable tissue regeneration response by harnessing the design flexibility of additive manufacturing. STATEMENT OF SIGNIFICANCE: It is well-established that cells sense and respond to their 2D geometric microenvironment by transmitting extracellular physiochemical forces through the cytoskeleton and biochemical signalling to the nucleus, facilitating epigenetic changes such as DNA methylation, histone acetylation, and microRNA expression. In this context, the current review presents a unique perspective and highlights the importance of 3D architectures (dimensionality and geometries) on cell and nuclear mechanics and epigenetics. Insight into current challenges around the study of mechanobiology and epigenetics utilising additively manufactured 3D scaffold geometries will progress biomaterials research in this space.
Collapse
|
7
|
Han P, Liu C, Staples R, Moran CS, Ramachandra SS, Gómez-Cerezo MN, Ivanovski S. Salivary SARS-CoV-2 antibody detection using S1-RBD protein-immobilized 3D melt electrowritten poly(ε-caprolactone) scaffolds. RSC Adv 2022; 12:24849-24856. [PMID: 36128389 PMCID: PMC9429024 DOI: 10.1039/d2ra03979f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Sensitive detection of immunoglobulin antibodies against SARS-CoV-2 during the COVID-19 pandemic is critical to monitor the adaptive immune response after BNT162b2 mRNA vaccination. Currently employed binding antibody detection tests using 2D microplate-based enzyme-linked immunosorbent assays (ELISA) are limited by the degree of sensitivity. In this study, a 3D antibody test was developed by immobilizing the receptor-binding domain on Spike subunit 1 (S1-RBD) of SARS-CoV-2 onto engineered melt electrowritten (MEW) poly(ε-caprolactone) (PCL) scaffolds (pore: 500 μm, fiber diameter: 17 μm) using carbodiimide crosslinker chemistry. Protein immobilization was confirmed using X-ray photoelectron spectroscopy (XPS) by the presence of peaks corresponding with nitrogen. Self-developed indirect ELISA was performed to assess the functionality of the 3D platform in comparison with a standard 2D tissue culture plate (TCP) system, using whole unstimulated saliva samples from 14 non-vaccinated and 20 vaccinated participants (1- and 3- weeks post-dose 1; 3 days, 1 week and 3 weeks post-dose 2) without prior SARS-CoV-2 infection. The three-dimensional S1-RBD PCL scaffolds, while demonstrating a kinetic trend comparable to 2D TCP, exhibited significantly higher sensitivity and detection levels for all three immunoglobulins assayed (IgG, IgM, and IgA). These novel findings highlight the potential of MEW PCL constructs in the development of improved low-cost, point-of-care, and self-assessing diagnostic platforms for the detection and monitoring of SARS-CoV-2 antibodies. Our work developed a 3D SARS-CoV-2 antibody detection platform in non-invasive saliva samples using S1-RBD protein-immobilized 3D melt electrowritten poly(ε-caprolactone) scaffolds.![]()
Collapse
Affiliation(s)
- Pingping Han
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| | - Chun Liu
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| | - Reuben Staples
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| | - Corey S. Moran
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| | - Srinivas Sulugodu Ramachandra
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| | - Maria Natividad Gómez-Cerezo
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| | - Sašo Ivanovski
- The University of Queensland, School of Dentistry, Brisbane, QLD 4006, Australia
- The University of Queensland, School of Dentistry, Center for Oral-facial Regeneration, Rehabilitation and Reconstruction (COR3), Brisbane, QLD 4006, Australia
| |
Collapse
|