1
|
Fu K, Yuan D, Yu T, Lei C, Kou Z, Huang B, Lyu S, Zhang F, Wan T. Recent Advances on Two-Dimensional Nanomaterials Supported Single-Atom for Hydrogen Evolution Electrocatalysts. Molecules 2024; 29:4304. [PMID: 39339299 PMCID: PMC11434429 DOI: 10.3390/molecules29184304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Water electrolysis has been recognized as a promising technology that can convert renewable energy into hydrogen for storage and utilization. The superior activity and low cost of catalysis are key factors in promoting the industrialization of water electrolysis. Single-atom catalysts (SACs) have attracted attention due to their ultra-high atomic utilization, clear structure, and highest hydrogen evolution reaction (HER) performance. In addition, the performance and stability of single-atom (SA) substrates are crucial, and various two-dimensional (2D) nanomaterial supports have become promising foundations for SA due to their unique exposed surfaces, diverse elemental compositions, and flexible electronic structures, to drive single atoms to reach performance limits. The SA supported by 2D nanomaterials exhibits various electronic interactions and synergistic effects, all of which need to be comprehensively summarized. This article aims to organize and discuss the progress of 2D nanomaterial single-atom supports in enhancing HER, including common and widely used synthesis methods, advanced characterization techniques, different types of 2D supports, and the correlation between structural hydrogen evolution performance. Finally, the latest understanding of 2D nanomaterial supports was proposed.
Collapse
Affiliation(s)
- Kangkai Fu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Douke Yuan
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Ting Yu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Chaojun Lei
- Key Laboratory of Organosilicon Chemistry and Material Technology, College of Material, Chemistry and Chemical Engineering, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhenhui Kou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bingfeng Huang
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Siliu Lyu
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Feng Zhang
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Tongtao Wan
- Hubei Key Laboratory of Automotive Power Train and Electronic Control, School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronic Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| |
Collapse
|
2
|
Liu Y, Wu Z, Gu C, Chen J, Zhu Y, Wang L. Curved Structure Regulated Single Metal Sites for Advanced Electrocatalytic Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404758. [PMID: 39140281 DOI: 10.1002/smll.202404758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Curved surface with defined local electronic structures and regulated surface microenvironments is significant for advanced catalytic engineering. Since single-atom catalysts are highly efficient and active, they have attracted much attention in recent years. The curvature carrier has a significant effect on the electronic structure regulation of single-atom sites, which effectively promote the catalytic efficiency. Here, the effect of the curvature structure with exposed metal atoms for catalysis is comprehensively summarized. First, the substrates with curvature features are reviewed. Second, the applications of single-atom catalysts containing curvature in a variety of different electrocatalytic reactions are discussed in depth. The impact of curvature effects in catalytic reactions is further analyzed. Finally, prospects and suggestions for their application and future development are presented. This review paves the way for the construction of high curvature-containing surface carriers, which is of great significance for single-atom catalysts development.
Collapse
Affiliation(s)
- Yang Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Zefei Wu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Chen Gu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| | - Yanwei Zhu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), 9 Wenyuan, Nanjing, 210023, P. R. China
| |
Collapse
|
3
|
Zhu YN, Li XB, Zhang Q, Peng F. Which Is Better for Hydrogen Evolution on Metal@MoS 2 Heterostructures from a Theoretical Perspective: Single Atom or Monolayer? ACS APPLIED MATERIALS & INTERFACES 2022; 14:25592-25600. [PMID: 35623062 DOI: 10.1021/acsami.2c06698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Single atom (SA)- and monolayer (ML)-supported catalysts are two main technical routines to increase electrochemical catalytic performance and reduce cost. To date, it is still a debate which one is better for catalysis in experiments as both routines face a puzzling problem of searching for balance between stability and catalytic activity. Here, hydrogen evolution on two-dimensional 2H-MoS2 with SA- and ML-adsorbed metal atoms (23 kinds in total) is taken as an example to solve this question by first-principles calculations. The thermodynamic stability during synthesis, in vacuum, and in electrochemical reaction conditions is determined to access the stability of MoS2 loaded with single (MS@MoS2) and monolayer metal atoms (MM@MoS2). The realistic catalytic surfaces determined by surface Pourbaix diagrams, the free energy changes of hydrogen atoms at different coverages, and the exchange current densities are applied to determine hydrogen evolution reaction (HER) activity. The results show that all MM@MoS2 are much more stable than the corresponding MS@MoS2 as the metal-metal interaction in MLs could make the former structures more stable. In general, MM@MoS2 show higher hydrogen evolution activities than those of MS@MoS2. In detail, the exchange current densities of MoS2 loaded by Pd ML and Au ML are 6.208, and 1.109 mA/cm-2, respectively, which are comparable to Pt(111). Combining with small binding energies, the Pd and Au MLs are the most promising catalysts for hydrogen evolution. The purpose of this work is to highlight the advantages and disadvantages of SA- and ML-supported surfaces as HER catalysts and provide a fundamental standard for studying them.
Collapse
Affiliation(s)
- Ya-Nan Zhu
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xi-Bo Li
- Department of Physics, Jinan University, Guangzhou 510632, China
| | - Qiao Zhang
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Feng Peng
- Guangzhou Key Laboratory for New Energy and Green Catalysis, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|