1
|
Adesoye S, Al Abdullah S, Kumari A, Pathiraja G, Nowlin K, Dellinger K. Au-Coated ZnO Surface-Enhanced Raman Scattering (SERS) Substrates: Synthesis, Characterization, and Applications in Exosome Detection. CHEMOSENSORS (BASEL, SWITZERLAND) 2023; 11:554. [PMID: 39371047 PMCID: PMC11450680 DOI: 10.3390/chemosensors11110554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Developing a biomolecular detection method that minimizes photodamage while preserving an environment suitable for biological constituents to maintain their physiological state is expected to drive new diagnostic and mechanistic breakthroughs. In addition, ultra-sensitive diagnostic platforms are needed for rapid and point-of-care technologies for various diseases. Considering this, surface-enhanced Raman scattering (SERS) is proposed as a non-destructive and sensitive approach to address the limitations of fluorescence, electrochemical, and other optical detection techniques. However, to advance the applications of SERS, novel approaches that can enhance the signal of substrate materials are needed to improve reproducibility and costs associated with manufacture and scale-up. Due to their physical properties and synthesis, semiconductor-based nanostructures have gained increasing recognition as SERS substrates; however, low signal enhancements have offset their widespread adoption. To address this limitation and assess the potential for use in biological applications, zinc oxide (ZnO) was coated with different concentrations (0.01-0.1 M) of gold (Au) precursor. When crystal violet (CV) was used as a model target with the synthesized substrates, the highest enhancement was obtained with ZnO coated with 0.05 M Au precursor. This substrate was subsequently applied to differentiate exosomes derived from three cell types to provide insight into their molecular diversity. We anticipate this work will serve as a platform for colloidal hybrid SERS substrates in future bio-sensing applications.
Collapse
Affiliation(s)
- Samuel Adesoye
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Saqer Al Abdullah
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Anjali Kumari
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Gayani Pathiraja
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Kyle Nowlin
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E Gate City Blvd, Greensboro, NC 27401, USA
| |
Collapse
|
2
|
Novikov SM. Hybrid Plasmonic Nanostructures and Their Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4293. [PMID: 36500916 PMCID: PMC9739200 DOI: 10.3390/nano12234293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
The hybrid nanostructures, i [...].
Collapse
Affiliation(s)
- Sergey M Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology (MIPT), 9 Institutsky Lane, Dolgoprudny 141700, Russia
| |
Collapse
|
3
|
Samodelova MV, Kapitanova OO, Meshcheryakova NF, Novikov SM, Yarenkov NR, Streletskii OA, Yakubovsky DI, Grabovenko FI, Zhdanov GA, Arsenin AV, Volkov VS, Zavyalova EG, Veselova IA, Zvereva MI. Model of the SARS-CoV-2 Virus for Development of a DNA-Modified, Surface-Enhanced Raman Spectroscopy Sensor with a Novel Hybrid Plasmonic Platform in Sandwich Mode. BIOSENSORS 2022; 12:bios12090768. [PMID: 36140152 PMCID: PMC9497064 DOI: 10.3390/bios12090768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022]
Abstract
The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has posed a great challenge for the development of ultra-fast methods for virus identification based on sensor principles. We created a structure modeling surface and size of the SARS-CoV-2 virus and used it in comparison with the standard antigen SARS-CoV-2—the receptor-binding domain (RBD) of the S-protein of the envelope of the SARS-CoV-2 virus from the Wuhan strain—for the development of detection of coronaviruses using a DNA-modified, surface-enhanced Raman scattering (SERS)-based aptasensor in sandwich mode: a primary aptamer attached to the plasmonic surface—RBD-covered Ag nanoparticle—the Cy3-labeled secondary aptamer. Fabricated novel hybrid plasmonic structures based on “Ag mirror-SiO2-nanostructured Ag” demonstrate sensitivity for the detection of investigated analytes due to the combination of localized surface plasmons in nanostructured silver surface and the gap surface plasmons in a thin dielectric layer of SiO2 between silver layers. A specific SERS signal has been obtained from SERS-active compounds with RBD-specific DNA aptamers that selectively bind to the S protein of synthetic virion (dissociation constants of DNA-aptamer complexes with protein in the range of 10 nM). The purpose of the study is to systematically analyze the combination of components in an aptamer-based sandwich system. A developed virus size simulating silver particles adsorbed on an aptamer-coated sensor provided a signal different from free RBD. The data obtained are consistent with the theory of signal amplification depending on the distance of the active compound from the amplifying surface and the nature of such a compound. The ability to detect the target virus due to specific interaction with such DNA is quantitatively controlled by the degree of the quenching SERS signal from the labeled compound. Developed indicator sandwich-type systems demonstrate high stability. Such a platform does not require special permissions to work with viruses. Therefore, our approach creates the promising basis for fostering the practical application of ultra-fast, amplification-free methods for detecting coronaviruses based on SARS-CoV-2.
Collapse
Affiliation(s)
- Mariia V. Samodelova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Olesya O. Kapitanova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Correspondence:
| | | | - Sergey. M. Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Nikita R. Yarenkov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Oleg A. Streletskii
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Dmitry I. Yakubovsky
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Fedor I. Grabovenko
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Gleb A. Zhdanov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Aleksey V. Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Valentyn S. Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Elena G. Zavyalova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Irina A. Veselova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Maria I. Zvereva
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| |
Collapse
|
4
|
Samodelova MV, Kapitanova OO, Evdokimov PV, Eremina OE, Goodilin EA, Veselova IA. Plasmonic features of free-standing chitosan nanocomposite film with silver and graphene oxide for SERS applications. NANOTECHNOLOGY 2022; 33:335501. [PMID: 35508104 DOI: 10.1088/1361-6528/ac6c98] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
A scalable procedure of SERS substrates design was developed using a novel plasmonic structure based on a freestanding chitosan film, silver nanoparticles, and graphene oxide. Chitosan provides a uniform distribution of silver nanoparticles from a colloidal suspension and, therefore, a reproducible Raman signal from local areas of measurements of several tens of microns. The addition of graphene oxide (GO) to the colloidal solution of silver nanoparticles suppresses the tortuous background fluorescence signal from the analyte and leads to an increase in the signal-to-fluorescence background intensity ratio by up to 6 times as compared to structures without GO. The manufactured plasmonic polymer nanocomposite provides a detection limit of down to 100 pM for R6G using a laser wavelength of 532 nm through a portable ×10 objective. The high colloidal stability of GO in water and the use of an aqueous colloid of silver nanoparticles simplify the procedure for creating a substrate by applying the GO-silver composite on the surface of a chitosan film without a need to form a GO film. Therefore, our approach paves a promising avenue to provide more sensitive detection even for the fluorescent analytes with short-wavelength lasers (532, 633 nm) instead of IR (785, 1024 nm) and foster the practical application of the developed plasmonic composites on portable Raman spectrometers.
Collapse
Affiliation(s)
- Mariia V Samodelova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
| | - Olesya O Kapitanova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
- Center for photonics and 2D materials, Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
| | - Pavel V Evdokimov
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii prospect 31, Moscow, 119991, Russia
| | - Olga E Eremina
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
| | - Eugene A Goodilin
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
- Faculty of Materials Science, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Irina A Veselova
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie gory 1, Moscow, 119991, Russia
| |
Collapse
|
5
|
A New Approach to the Formation of Nanosized Gold and Beryllium Films by Ion-Beam Sputtering Deposition. NANOMATERIALS 2022; 12:nano12030470. [PMID: 35159815 PMCID: PMC8840201 DOI: 10.3390/nano12030470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Thin films of beryllium and gold that are several tens of nanometers thick were obtained, for the first time, on silicon and quartz substrates by the ion-beam method with tenfold alternation of deposition and partial sputtering of the nanosized metal layer. Scanning electron and atomic force microscopy indicate the predominant lateral growth of nanosized metal layers along the substrate surface. Optical spectra indicate the suppression of the localized plasmon resonance. The growth of the film occurs under the influence of the high-energy component of the sputtered metal atoms’ flux. The main role in the formation of the nanosized metal film is played by the processes of the elastic collision of incident metal atoms with the atoms of a substrate and a growing metal film. Metal films that are obtained by the tenfold application of the deposition–sputtering of a nanoscale metal layer are characterized by stronger adhesion to the substrate and have better morphological, electrical, and optical characteristics than those that are obtained by means of direct single deposition.
Collapse
|
6
|
Pandey P, Seo MK, Shin KH, Lee YW, Sohn JI. Hierarchically Assembled Plasmonic Metal-Dielectric-Metal Hybrid Nano-Architectures for High-Sensitivity SERS Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:401. [PMID: 35159747 PMCID: PMC8838151 DOI: 10.3390/nano12030401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023]
Abstract
In this work, we designed and prepared a hierarchically assembled 3D plasmonic metal-dielectric-metal (PMDM) hybrid nano-architecture for high-performance surface-enhanced Raman scattering (SERS) sensing. The fabrication of the PMDM hybrid nanostructure was achieved by the thermal evaporation of Au film followed by thermal dewetting and the atomic layer deposition (ALD) of the Al2O3 dielectric layer, which is crucial for creating numerous nanogaps between the core Au and the out-layered Au nanoparticles (NPs). The PMDM hybrid nanostructures exhibited strong SERS signals originating from highly enhanced electromagnetic (EM) hot spots at the 3 nm Al2O3 layer serving as the nanogap spacer, as confirmed by the finite-difference time-domain (FDTD) simulation. The PMDM SERS substrate achieved an outstanding SERS performance, including a high sensitivity (enhancement factor, EF of 1.3 × 108 and low detection limit 10-11 M) and excellent reproducibility (relative standard deviation (RSD) < 7.5%) for rhodamine 6G (R6G). This study opens a promising route for constructing multilayered plasmonic structures with abundant EM hotspots for the highly sensitive, rapid, and reproducible detection of biomolecules.
Collapse
Affiliation(s)
- Puran Pandey
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea; (P.P.); (M.-K.S.); (K.H.S.)
| | - Min-Kyu Seo
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea; (P.P.); (M.-K.S.); (K.H.S.)
| | - Ki Hoon Shin
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea; (P.P.); (M.-K.S.); (K.H.S.)
| | - Young-Woo Lee
- Department of Energy Systems, Soonchunhyang University, Asan-si 31538, Korea
| | - Jung Inn Sohn
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, Korea; (P.P.); (M.-K.S.); (K.H.S.)
| |
Collapse
|