1
|
Golubitchenko TV, Emelyanenko KA, Krasovsky VG, Emelyanenko AM, Boinovich LB. Are the Imidazole Ionic Liquids Suitable Lubricants for Slippery Coatings? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 39832162 DOI: 10.1021/acs.langmuir.4c04543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The results of an investigation of an impact of the structure of recently synthesized bis(trifluoromethylsulfonyl)imide mono- and dicationic ionic liquids on their properties and behavior as lubricants for slippery liquid infused superhydrophobic coatings are presented for a wide temperature range. In this study, a new approach based on monitoring the surface tension of a liquid sessile droplet on top of a coating was exploited for the analysis of the evolution of the coating properties in prolonged contact with the liquid. It was found that the continuous contact with water flow results in slippery property degradation according to two different scenarios. In the first one, the washing out of lubricant eventually led to the transition from water droplets sliding to them rolling with the establishment of a superhydrophobic state. The second scenario was revealed in di- and monocationic ILs with a siloxane linker or both siloxane tails through the continuous lubricant depletion from the texture, increase in sliding angle value, loss of slippery properties, and establishing of a homogeneous wetting regime by aqueous droplets with the contact angle around 140°. The obtained experimental data allowed concluding that, among studied ILs, the monocationic bis(trifluoromethylsulfonyl)imide ionic liquids with alkyl or mixed alkylene/siloxane tails are better suitable for application as lubricants for slippery, regularly refilled surfaces.
Collapse
Affiliation(s)
- Timofei V Golubitchenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Kirill A Emelyanenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Vladimir G Krasovsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandre M Emelyanenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ludmila B Boinovich
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
2
|
Govinda Raj M, Mahalingam S, Gnanarani SV, Jayashree C, Ganeshraja AS, Pugazhenthiran N, Rahaman M, Abinaya S, Senthil B, Kim J. TiO 2 nanorod decorated with MoS 2 nanospheres: An efficient dual-functional photocatalyst for antibiotic degradation and hydrogen production. CHEMOSPHERE 2024; 357:142033. [PMID: 38615961 DOI: 10.1016/j.chemosphere.2024.142033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The design and preparation of dual-functional photocatalysts for simultaneously realizing photocatalytic wastewater purification and hydrogen energy generation pose significant challenges. This article presents the engineering of a binary heterostructured photocatalyst by combining TiO2 (nanorods) and MoS2 nanosphere using a straightforward solvothermal method and the assessment of the phase structures, morphologies, and optical properties of the resulting nanocomposites using diverse analytical techniques. The TiO2(Rod)/MoS2 composite exhibits remarkable efficacy in degrading ciprofloxacin, achieving 93% removal rate within 1 h, which is four times higher than that of bare TiO2. Moreover, the optimized TiO2(Rod)/MoS2 presents an outstanding hydrogen production rate of 7415 μmol g-1, which is ∼24 times higher than that of pristine TiO2. Under UV-visible light irradiation, the TiO2(Rod)/MoS2 heterojunction displays an exceptional photocatalytic performance in terms of both photodegradation and hydrogen production, surpassing the performance of TiO2 particle/MoS2. The study findings demonstrate that TiO2(Rod)/MoS2 nanocomposites exhibit considerably improved photocatalytic degradation and hydrogen generation activities. Based on the experimental results, a possible mechanism is proposed for the transfer and separation of charge carriers in Z-scheme heterojunctions.
Collapse
Affiliation(s)
- Muniyandi Govinda Raj
- Centre for Herbal Pharmacology and Environmental Sustainability Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Chennai, 603 103, India
| | - Shanmugam Mahalingam
- Department of Materials System Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Solomon Vasthi Gnanarani
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, Ramapuram, Chennai, 600089, India
| | - Charmakani Jayashree
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, Ramapuram, Chennai, 600089, India
| | - Ayyakannu Sundaram Ganeshraja
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai, 600 077, Tamil Nadu, India
| | | | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Srinivasan Abinaya
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, Ramapuram, Chennai, 600089, India
| | - Bakthavatchalam Senthil
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, Ramapuram, Chennai, 600089, India.
| | - Junghwan Kim
- Department of Materials System Engineering, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
3
|
Mokhtarpour M, Rostami A, Shekaari H, Zarghami A, Faraji S. Thermal properties of novel phase change materials based on protic ionic liquids containing ethanolamines and stearic acid for efficient thermal energy storage. Phys Chem Chem Phys 2024; 26:13839-13849. [PMID: 38656334 DOI: 10.1039/d4cp00976b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In the field of energy harvesting, phase change materials (PCMs) hold great promise. 2-hydroxyethylammonium stearate ([HEA]Ste), bis(2-hydroxyethyl)ammonium stearate ([DHEA]Ste), and tris(2-hydroxyethyl)ammonium stearate ([THEA]Ste) ionic liquids (ILs) demonstrate promising capabilities to enhance thermal energy storage (TES) performance within the 30-100 °C temperature range. This research presents these ILs as PCMs for the first time, emphasizing their environmentally friendly characteristics, safety profile, and cost-effectiveness. The chemical composition and microstructure of these PCMs were investigated using scanning electron microscopy (SEM), and fourier transform infrared spectroscopy (FT-IR), while differential scanning calorimetry (DSC) was employed to assess their latent heat of fusion and specific heat capacity. Furthermore, thermal gravimetric analysis (TGA) was utilized to evaluate the thermal stability of these ILs. In addition, valuable insights into the surface properties and behavior of PCMs at the nanoscale are provided using atomic force microscopy (AFM). Results show that the latent heats of fusion for [HEA]Ste, [DHEA]Ste, and [THEA]Ste are about 171.12, 152.58, and 136.55 kJ kg-1, respectively. Also, thermal stability analysis shows the maximum stability (99.5%) for [HEA]Ste. Ultimately, a custom-built setup featuring a cell containing a PCM derived from synthesized ILs and a commercially available thermoelectric generator (TEG) was employed to measure live voltage (V) in the conversion of heat energy into electrical power. On the other hand, specifically in this measurement we recorded the output voltage (open circuit case) of the TEG device versus time and demonstrated that after turning off the thermal energy source, the proposed system provides the electrical energy for a while (more than 2 hours).
Collapse
Affiliation(s)
| | - Ali Rostami
- Photonics and Nanocrystal Research Lab (PNRL), Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
| | - Hemayat Shekaari
- Department of Physical Chemistry, University of Tabriz, Tabriz, Iran
| | - Armin Zarghami
- Photonics and Nanocrystal Research Lab (PNRL), Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran.
| | - Saeid Faraji
- Department of Physical Chemistry, University of Tabriz, Tabriz, Iran
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| |
Collapse
|
4
|
Kuznetsova I, Lebedeva O, Kultin D, Perova N, Kalmykov K, Chernavskii P, Perov N, Kustov L. Is a 2D Nanostructured Surface Capable of Changing the Corrosion and Magnetic Properties of an Amorphous Alloy? Int J Mol Sci 2023; 24:13373. [PMID: 37686187 PMCID: PMC10488001 DOI: 10.3390/ijms241713373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
In this work, an attempt was made to reveal and explain the influence of the process of formation of 2D nanostructures at the surface of an amorphous alloy (an alloy with the composition Co75Si15Fe5Cr4.5Al0.5 (in at.%) was used for this purpose) on the corrosion and magnetic properties of such an alloy. Two-dimensional nanostructures (nanocells of 100-150 nm in size, which were obtained by anodizing the initial sample in an ionic liquid) are essentially a pattern on the surface of the sample, and they cannot completely cover and block the surface from external effects. It was postulated that the presence of these nanostructures during corrosion and magnetic tests has no significant effect. However, a noticeable inhibition effect was observed during corrosion tests and a less noticeable (but still detectable) effect was observed during magnetic tests. The authors believe that the effect obtained, with a detailed study, can be used to increase the corrosion resistance and to improve the properties of traditional magnetic materials.
Collapse
Affiliation(s)
- Irina Kuznetsova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (I.K.); (D.K.); (K.K.); (P.C.)
| | - Olga Lebedeva
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (I.K.); (D.K.); (K.K.); (P.C.)
| | - Dmitry Kultin
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (I.K.); (D.K.); (K.K.); (P.C.)
| | - Natalia Perova
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.P.); (N.P.)
| | - Konstantin Kalmykov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (I.K.); (D.K.); (K.K.); (P.C.)
| | - Petr Chernavskii
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (I.K.); (D.K.); (K.K.); (P.C.)
| | - Nikolai Perov
- Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.P.); (N.P.)
| | - Leonid Kustov
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia; (I.K.); (D.K.); (K.K.); (P.C.)
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, 119991 Moscow, Russia
- Institute of Ecology and Engineering, National Science and Technology University “MISiS”, Leninsky Prospect 4, 119049 Moscow, Russia
| |
Collapse
|
5
|
Cui H, Huang X. Green and efficient electrosynthesis of poly-3,4-ethylenedioxythiophene in aqueous micellar solution of zwitterionic surfactant. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Molodkina EB, Ehrenburg MR, Rudnev AV. Electrochemical Codeposition of Sm and Co in a Dicyanamide Ionic Liquid. RUSS J ELECTROCHEM+ 2022. [DOI: 10.1134/s1023193522120059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Harish V, Ansari MM, Tewari D, Gaur M, Yadav AB, García-Betancourt ML, Abdel-Haleem FM, Bechelany M, Barhoum A. Nanoparticle and Nanostructure Synthesis and Controlled Growth Methods. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12183226. [PMID: 36145012 PMCID: PMC9503496 DOI: 10.3390/nano12183226] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 05/19/2023]
Abstract
Nanomaterials are materials with one or more nanoscale dimensions (internal or external) (i.e., 1 to 100 nm). The nanomaterial shape, size, porosity, surface chemistry, and composition are controlled at the nanoscale, and this offers interesting properties compared with bulk materials. This review describes how nanomaterials are classified, their fabrication, functionalization techniques, and growth-controlled mechanisms. First, the history of nanomaterials is summarized and then the different classification methods, based on their dimensionality (0-3D), composition (carbon, inorganic, organic, and hybrids), origin (natural, incidental, engineered, bioinspired), crystal phase (single phase, multiphase), and dispersion state (dispersed or aggregated), are presented. Then, the synthesis methods are discussed and classified in function of the starting material (bottom-up and top-down), reaction phase (gas, plasma, liquid, and solid), and nature of the dispersing forces (mechanical, physical, chemical, physicochemical, and biological). Finally, the challenges in synthesizing nanomaterials for research and commercial use are highlighted.
Collapse
Affiliation(s)
- Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Manish Gaur
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | - Awadh Bihari Yadav
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, Uttar Pradesh, India
| | | | - Fatehy M. Abdel-Haleem
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
- Center for Hazards Mitigation, Environmental Studies and Research (CHMESR), Cairo University, Giza 12613, Egypt
| | - Mikhael Bechelany
- Institut Europeen des Membranes, IEM, UMR 5635, University of Montpellier, ENSCM, CNRS, 34730 Montpellier, France
- Correspondence: (M.B.); or (A.B.)
| | - Ahmed Barhoum
- NanoStruc Research Group, Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
- School of Chemical Sciences, Dublin City University, D09 Y074 Dublin, Ireland
- Correspondence: (M.B.); or (A.B.)
| |
Collapse
|
8
|
Highly stable acetylcholinesterase electrochemical biosensor based on polymerized ionic liquids microgel for pesticides detection. Mikrochim Acta 2022; 189:300. [PMID: 35904635 DOI: 10.1007/s00604-022-05383-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/18/2022] [Indexed: 10/16/2022]
Abstract
A highly stable electrochemical biosensor for pesticide detection was developed. For the first time polymeric ionic liquids (PILs) were introduced to construct an acetylcholinesterase (AChE) biosensor . AChE was entrapped in PILs microspheres through an emulsion polymerization reaction, where negatively charged Au nanoparticles (Au NPs) can be immobilized by the positively charged PILs, leading to improved catalytic performance. The results suggest that the positively charged PILs not only provide a biocompatible microenvironment around the enzyme molecule, stabilizing its biological activity and preventing its leakage, but also act as a modifiable interface allowing other components with electron transport properties to be loaded onto the polymer substrate, thus providing an efficient electron transport channel for the entrapped enzyme. More notably, when AChE was immobilized in a positively charged environment, the active site is closer to the electrode, promoting faster electron transfer. The detection limits of the constructed electrochemical biosensor AChE@PILs@Au NPs/GCE toward carbaryl and dichlorvos (DDVP) were 5.0 × 10-2 ng ml-1 and 3.9 × 10-2 ng ml-1, in a wide linear range of 6.3 × 10-2-8.8 × 102 ng ml-1 and 1.3 × 10-1-1.4 × 103 ng ml-1, respectively. More importantly, the biosensor has high thermal and storage stability, which facilitates rapid field analysis of fruits and vegetables in a variety of climates. In addition, the biosensor reported has good repeatability and selectivity and has high accuracy in the analysis of peaches, tap water, and other types of samples.
Collapse
|
9
|
Crintea A, Dutu AG, Sovrea A, Constantin AM, Samasca G, Masalar AL, Ifju B, Linga E, Neamti L, Tranca RA, Fekete Z, Silaghi CN, Craciun AM. Nanocarriers for Drug Delivery: An Overview with Emphasis on Vitamin D and K Transportation. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1376. [PMID: 35458084 PMCID: PMC9024560 DOI: 10.3390/nano12081376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023]
Abstract
Mounting evidence shows that supplementation with vitamin D and K or their analogs induces beneficial effects in various diseases, e.g., osteoarticular, cardiovascular, or carcinogenesis. The use of drugs delivery systems via organic and inorganic nanocarriers increases the bioavailability of vitamins and analogs, enhancing their cellular delivery and effects. The nanotechnology-based dietary supplements and drugs produced by the food and pharmaceutical industries overcome the issues associated with vitamin administration, such as stability, absorption or low bioavailability. Consequently, there is a continuous interest in optimizing the carriers' systems in order to make them more efficient and specific for the targeted tissue. In this pioneer review, we try to circumscribe the most relevant aspects related to nanocarriers for drug delivery, compare different types of nanoparticles for vitamin D and K transportation, and critically address their benefits and disadvantages.
Collapse
Affiliation(s)
- Andreea Crintea
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alina Gabriela Dutu
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alina Sovrea
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.S.); (A.-M.C.)
| | - Anne-Marie Constantin
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.S.); (A.-M.C.)
| | - Gabriel Samasca
- Department of Immunology, Iuliu Hatieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Aurelian Lucian Masalar
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Brigitta Ifju
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Eugen Linga
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Lidia Neamti
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Rares Andrei Tranca
- Department of Molecular Biology and Biotechnology, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Zsolt Fekete
- Department of Oncology, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Ciprian Nicolae Silaghi
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| | - Alexandra Marioara Craciun
- Department of Medical Biochemistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (A.C.); (A.G.D.); (A.L.M.); (B.I.); (E.L.); (L.N.); (A.M.C.)
| |
Collapse
|