1
|
Mizoshiri M, Tran TD, Nguyen KVT. Size Effects of Copper(I) Oxide Nanospheres on Their Morphology on Copper Thin Films under Near-Infrared Femtosecond Laser Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1584. [PMID: 39404311 PMCID: PMC11478529 DOI: 10.3390/nano14191584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 10/19/2024]
Abstract
The femtosecond laser direct writing of metals has gained significant attention for micro/nanostructuring. Copper (I) oxide nanospheres (NSs), a promising material for multi-photon metallization, can be reduced to copper (Cu) and sintered through near-infrared femtosecond laser pulse irradiation. In this study, we investigated the size effect of copper (I) oxide nanospheres on their morphology when coated on Cu thin films and irradiated by near-infrared femtosecond laser pulses. Three Cu2O NS inks were prepared, consisting of small (φ100 nm), large (φ200 nm), and a mixture of φ100 nm and φ200 nm NSs. A unique phenomenon was observed at low laser pulse energy: both sizes of NSs bonded as single layers when the mixed NSs were used. At higher pulse energies, the small NSs melted readily compared to the large NSs. In comparisons between the large and mixed NSs, some large NSs remained intact, suggesting that the morphology of the NSs can be controlled by varying the concentration of different-sized NSs. Considering the simulation results indicating that the electromagnetic fields between large and small NSs are nearly identical, this differential morphology is likely attributed to the differences in the heat capacity of the NSs.
Collapse
Affiliation(s)
- Mizue Mizoshiri
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan
| | | | | |
Collapse
|
2
|
Pinheiro T, Morais M, Silvestre S, Carlos E, Coelho J, Almeida HV, Barquinha P, Fortunato E, Martins R. Direct Laser Writing: From Materials Synthesis and Conversion to Electronic Device Processing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402014. [PMID: 38551106 DOI: 10.1002/adma.202402014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/18/2024] [Indexed: 04/25/2024]
Abstract
Direct Laser Writing (DLW) has been increasingly selected as a microfabrication route for efficient, cost-effective, high-resolution material synthesis and conversion. Concurrently, lasers participate in the patterning and assembly of functional geometries in several fields of application, of which electronics stand out. In this review, recent advances and strategies based on DLW for electronics microfabrication are surveyed and outlined, based on laser material growth strategies. First, the main DLW parameters influencing material synthesis and transformation mechanisms are summarized, aimed at selective, tailored writing of conductive and semiconducting materials. Additive and transformative DLW processing mechanisms are discussed, to open space to explore several categories of materials directly synthesized or transformed for electronics microfabrication. These include metallic conductors, metal oxides, transition metal chalcogenides and carbides, laser-induced graphene, and their mixtures. By accessing a wide range of material types, DLW-based electronic applications are explored, including processing components, energy harvesting and storage, sensing, and bioelectronics. The expanded capability of lasers to participate in multiple fabrication steps at different implementation levels, from material engineering to device processing, indicates their future applicability to next-generation electronics, where more accessible, green microfabrication approaches integrate lasers as comprehensive tools.
Collapse
Affiliation(s)
- Tomás Pinheiro
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Maria Morais
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Sara Silvestre
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Emanuel Carlos
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - João Coelho
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Henrique V Almeida
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Pedro Barquinha
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Elvira Fortunato
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| | - Rodrigo Martins
- i3N|CENIMAT, Department of Materials Science, NOVA School of Science and Technology and CEMOP/UNINOVA, Campus de Caparica, Caparica, 2829-516, Portugal
| |
Collapse
|
3
|
Wang S, Yang J, Deng G, Zhou S. Femtosecond Laser Direct Writing of Flexible Electronic Devices: A Mini Review. MATERIALS (BASEL, SWITZERLAND) 2024; 17:557. [PMID: 38591371 PMCID: PMC10856408 DOI: 10.3390/ma17030557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 04/10/2024]
Abstract
By virtue of its narrow pulse width and high peak power, the femtosecond pulsed laser can achieve high-precision material modification, material additive or subtractive, and other forms of processing. With additional good material adaptability and process compatibility, femtosecond laser-induced application has achieved significant progress in flexible electronics in recent years. These advancements in the femtosecond laser fabrication of flexible electronic devices are comprehensively summarized here. This review first briefly introduces the physical mechanism and characteristics of the femtosecond laser fabrication of various electronic microdevices. It then focuses on effective methods of improving processing efficiency, resolution, and size. It further highlights the typical progress of applications, including flexible energy storage devices, nanogenerators, flexible sensors, and detectors, etc. Finally, it discusses the development tendency of ultrashort pulse laser processing. This review should facilitate the precision manufacturing of flexible electronics using a femtosecond laser.
Collapse
Affiliation(s)
- Shutong Wang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China; (S.W.)
| | - Junjie Yang
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China; (S.W.)
| | - Guoliang Deng
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China; (S.W.)
| | - Shouhuan Zhou
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China; (S.W.)
- North China Research Institute of Electro-Optics, Beijing 100015, China
| |
Collapse
|
4
|
Tang L, Zhang C, Liao C, Liu Y, Cheng Y. In Situ Sintering of CdSe/CdS Nanocrystals under Electron Beam Irradiation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3082. [PMID: 38132980 PMCID: PMC10745287 DOI: 10.3390/nano13243082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Abstract
Colloidal semiconductor nanocrystals have attracted widespread attention due to their tremendous electrical and optical properties. Nanoparticles exhibit a strong tendency to aggregate and sinter in a short period of time during processing or use due to their large surface area-to-volume ratio, which may lead to significant changes in their required performance. Therefore, it is of great significance to conduct in-depth research on the sintering process and mechanism of nanoparticles to maintain their stability. Here, the sintering process of CdSe/CdS core/shell nanocrystals under continuous electron beam irradiation was studied using in situ transmission electron microscopy (TEM). In the early stages of sintering, CdSe/CdS nanocrystals approached each other at a distance of approximately 1-2 nm. As the exposure time to the electron beam increased, the movement of surface atoms on the nanocrystals led to contact between them. Subsequently, the atoms on the contact surfaces underwent rapid motion, resulting in the rapid formation of the neck between the particles. The neck formation between adjacent particles provides strong evidence of a sintering mechanism dominated by surface atom diffusion rather than Ostwald ripening. Further research in this area could lead to the development of improved methods to prevent sintering and enhance the stability of nanocrystals, ultimately contributing to the advancement of nanomaterial-based devices and materials with long-lasting performance.
Collapse
Affiliation(s)
- Luping Tang
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, China
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Chun Zhang
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Liao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yiwei Liu
- College of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yonghao Cheng
- College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Levshakova A, Kaneva M, Borisov E, Panov M, Shmalko A, Nedelko N, Mereshchenko AS, Skripkin M, Manshina A, Khairullina E. Simultaneous Catechol and Hydroquinone Detection with Laser Fabricated MOF-Derived Cu-CuO@C Composite Electrochemical Sensor. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7225. [PMID: 38005154 PMCID: PMC10673110 DOI: 10.3390/ma16227225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
The conversion of metal-organic frameworks (MOFs) into advanced functional materials offers a promising route for producing unique nanomaterials. MOF-derived systems have the potential to overcome the drawbacks of MOFs, such as low electrical conductivity and poor structural stability, which have hindered their real-world applications in certain cases. In this study, laser scribing was used for pyrolysis of a Cu-based MOF ([Cu4{1,4-C6H4(COO)2}3(4,4'-bipy)2]n) to synthesize a Cu-CuO@C composite on the surface of a screen-printed electrode (SPE). Scanning electron microscopy, X-ray diffractometry, and Energy-dispersive X-ray spectroscopy were used for the investigation of the morphology and composition of the fabricated electrodes. The electrochemical properties of Cu-CuO@C/SPE were studied by cyclic voltammetry and differential pulse voltammetry. The proposed flexible electrochemical Cu-CuO@C/SPE sensor for the simultaneous detection of hydroquinone and catechol exhibited good sensitivity, broad linear range (1-500 μM), and low limits of detection (0.39 μM for HQ and 0.056 μM for CT).
Collapse
Affiliation(s)
- Aleksandra Levshakova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Maria Kaneva
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Evgenii Borisov
- Center for Optical and Laser Materials Research, St. Petersburg University, St. Petersburg 199034, Russia;
| | - Maxim Panov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
- Faculty of Pharmaceutical Technology, St. Petersburg State Chemical Pharmaceutical University, Professor Popov Str., 14, Lit. A, St. Petersburg 197022, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, St. Petersburg 194021, Russia;
| | - Alexandr Shmalko
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, St. Petersburg 194021, Russia;
| | - Nikolai Nedelko
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Andrey S. Mereshchenko
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Mikhail Skripkin
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Alina Manshina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
| | - Evgeniia Khairullina
- Institute of Chemistry, St. Petersburg State University, St. Petersburg 199034, Russia; (A.L.); (M.K.); or (M.P.); (N.N.); (A.S.M.); (M.S.)
- School of Physics and Engineering, ITMO University, St. Petersburg 191002, Russia
| |
Collapse
|
6
|
Bischoff K, Esen C, Hellmann R. Preparation of Dispersed Copper(II) Oxide Nanosuspensions as Precursor for Femtosecond Reductive Laser Sintering by High-Energy Ball Milling. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2693. [PMID: 37836334 PMCID: PMC10574695 DOI: 10.3390/nano13192693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023]
Abstract
This contribution demonstrates and discusses the preparation of finely dispersed copper(II) oxide nanosuspensions as precursors for reductive laser sintering (RLS). Since the presence of agglomerates interferes with the various RLS sub-processes, fine dispersion is required, and oversized particles must be identified by a measurement methodology. Aside from the established method of scanning electron microscopy for imaging individual dried particles, this work applies the holistic and statistically more significant laser diffraction in combination with dynamic image analysis in wet dispersion. In addition to direct ultrasonic homogenization, high-energy ball milling is introduced for RLS, to produce stable nanosuspensions with a high fine fraction, and, above all, the absence of oversize particles. Whereas ultrasonic dispersion stagnates at particle sizes between 500 nm and 20 μm, even after 8 h, milled suspension contains a high proportion of finest particles with diameters below 100 nm, no agglomerates larger than 1 μm and a trimodal particle size distribution with the median at 50 nm already, after 100 min of milling. The precursor layers produced by doctor blade coating are examined for their quality by laser scanning microscopy. The surface roughness of such a dry film can be reduced from 1.26 μm to 88 nm by milling. Finally, the novel precursor is used for femtosecond RLS, to produce homogeneous, high-quality copper layers with a sheet resistance of 0.28Ω/sq and a copper mass concentration of 94.2%.
Collapse
Affiliation(s)
- Kay Bischoff
- Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, 63743 Aschaffenburg, Germany
| | - Cemal Esen
- Applied Laser Technologies, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany;
| | - Ralf Hellmann
- Applied Laser and Photonics Group, University of Applied Sciences Aschaffenburg, Würzburger Straße 45, 63743 Aschaffenburg, Germany
| |
Collapse
|