1
|
Yang Z, Luo C, Wang N, Liu J, Zhang M, Xu J, Zhao Y. Fe 2O 3 Embedded in N-Doped Porous Carbon Derived from Hemin Loaded on Active Carbon for Supercapacitors. Molecules 2023; 29:146. [PMID: 38202729 PMCID: PMC10780133 DOI: 10.3390/molecules29010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The high power density and long cyclic stability of N-doped carbon make it an attractive material for supercapacitor electrodes. Nevertheless, its low energy density limits its practical application. To solve the above issues, Fe2O3 embedded in N-doped porous carbon (Fe2O3/N-PC) was designed by pyrolyzing Hemin/activated carbon (Hemin/AC) composites. A porous structure allows rapid diffusion of electrons and ions during charge-discharge due to its large surface area and conductive channels. The redox reactions of Fe2O3 particles and N heteroatoms contribute to pseudocapacitance, which greatly enhances the supercapacitive performance. Fe2O3/N-PC showed a superior capacitance of 290.3 F g-1 at 1 A g-1 with 93.1% capacity retention after 10,000 charge-discharge cycles. Eventually, a high energy density of 37.6 Wh kg-1 at a power density of 1.6 kW kg-1 could be delivered with a solid symmetric device.
Collapse
Affiliation(s)
- Zitao Yang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
| | - Cunhao Luo
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
| | - Ning Wang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
| | - Junshao Liu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
| | - Menglong Zhang
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
| | - Jing Xu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
| | - Yongnan Zhao
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China; (Z.Y.); (C.L.)
- Tianjin Key Laboratory of Advanced Fiber and Energy Storage Technology, School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
2
|
Havigh RS, Chenari HM. Preparation and characterization study of γ-Fe 2O 3/carbon composite nanofibers: electrospinning of composite fibers using PVP and iron nitrate as precursors. Phys Chem Chem Phys 2023; 25:8684-8691. [PMID: 36892437 DOI: 10.1039/d2cp05769g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
A γ-Fe2O3/carbon nanofiber composite was prepared by electrospinning a mixed solution of iron nitrate nonahydrate (Fe(NO3)3·9H2O) and polyvinylpyrrolidone (PVP) with subsequent treatment under an Ar atmosphere. A morphology study of the γ-Fe2O3/carbon nanofiber composite using FE-SEM, TEM, and AFM techniques confirms the formation of randomly oriented carbon fibers that include γ-Fe2O3 nanoparticles, along with an agglomeration in the fibrous environment and surface roughness of the fibers. Structural analysis from the XRD patterns showed that the synthesized sample was ferric oxide having a gamma phase tetragonal crystal structure and amorphous behavior of carbon. FT-IR spectroscopy further demonstrated the presence of functional groups corresponding to γ-Fe2O3 and carbon in the γ-Fe2O3/C structure. DRS spectra of the γ-Fe2O3/C fibers indicate absorption peaks related to γ-Fe2O3 and carbon in the γ-Fe2O3/carbon composite. In view of the magnetic properties, the composite nanofibers showed a high saturation magnetization Ms of 53.55 emu g-1.
Collapse
Affiliation(s)
- Roya Shokrani Havigh
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Ave, PO Box 41335-1914, Rasht, Iran.
| | - Hossein Mahmoudi Chenari
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Ave, PO Box 41335-1914, Rasht, Iran.
| |
Collapse
|
3
|
Yadav G, Ahmaruzzaman M. New generation advanced nanomaterials for photocatalytic abatement of phenolic compounds. CHEMOSPHERE 2022; 304:135297. [PMID: 35709838 DOI: 10.1016/j.chemosphere.2022.135297] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Nowadays, organic pollutants create severe problems worldwide. Phenolic compounds are the harmful pollutants that are developed from industrial effluents, thus causing several environmental problems. Low-cost materials show good potential capabilities for removal of phenolic compounds but are not so effective, so modification is required. New generation nanocatalysts are thought to be excellent for phenol removal. Removal of phenolic pollutants by photodegradation may lead to the decrement of these problematic groups. In this review, (i) a new generation of catalysts for the removal of phenolic compounds is discussed, (ii) nanocatalysts for photodegradation processes, and (iii) the mechanisms involved in photodegradation processes are also discussed. It is noticeable from the analysis that new generation catalysts for photodegradation processes have been demonstrated for high removal abilities of irrefutable phenolic compounds. Finally, future perspectives are also given in this article for the further development of next-generation catalysts.
Collapse
Affiliation(s)
- Gaurav Yadav
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| |
Collapse
|
4
|
Li Z, Liu K, Sun R, Yang C, Liu X. In Situ Decoration of ZnSnO 3 Nanosheets on the Surface of Hollow Zn 2SnO 4 Octahedrons for Enhanced Solar Energy Application. NANOMATERIALS 2022; 12:nano12122124. [PMID: 35745463 PMCID: PMC9230825 DOI: 10.3390/nano12122124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 12/05/2022]
Abstract
Hierarchical ZnSnO3/Zn2SnO4 porous hollow octahedrons were constructed using the method of combining the acid etching process with the in situ decoration technique for photovoltaic and photocatalytic applications. The composite was used as photoanode of the dye-sensitized solar cells (DSSCs), an overall 4.31% photovoltaic conversion efficiency was obtained, nearly a 73.1% improvement over the DSSCs that used Zn2SnO4 solid octahedrons. The composite was also determined to be a high-performance photocatalyst for the removal of heavy metal ion Cr (VI) and antibiotic ciprofloxacin (CIP) in single and co-existing systems under simulated sunlight irradiation. It was remarkable that the composite displayed good reusability and stability in a co-existing system, and the simultaneous removal performance could be restored by a simple acid treatment. These improvements of solar energy utilization were ascribed to the synergetic effect of the hierarchical porous hollow morphology, the introduction of ZnSnO3 nanosheets, and the heterojunction formed between ZnSnO3 and Zn2SnO4, which could improve light harvesting capacity, expedite electron transport and charge-separation efficiencies.
Collapse
Affiliation(s)
- Zhengdao Li
- Chemistry and Pharmaceutical Engineering College, Nanyang Normal University, Nanyang 473061, China; (K.L.); (R.S.); (C.Y.)
- Engineering Technology-Research Center of Henan Province for Solar Catalysis, Nanyang Normal University, Nanyang 473061, China
- Correspondence: (Z.L.); (X.L.); Tel.: +86-377-63-513-735 (Z.L.)
| | - Kecheng Liu
- Chemistry and Pharmaceutical Engineering College, Nanyang Normal University, Nanyang 473061, China; (K.L.); (R.S.); (C.Y.)
| | - Ruixue Sun
- Chemistry and Pharmaceutical Engineering College, Nanyang Normal University, Nanyang 473061, China; (K.L.); (R.S.); (C.Y.)
| | - Chuanyun Yang
- Chemistry and Pharmaceutical Engineering College, Nanyang Normal University, Nanyang 473061, China; (K.L.); (R.S.); (C.Y.)
- Engineering Technology-Research Center of Henan Province for Solar Catalysis, Nanyang Normal University, Nanyang 473061, China
| | - Xiaodi Liu
- Chemistry and Pharmaceutical Engineering College, Nanyang Normal University, Nanyang 473061, China; (K.L.); (R.S.); (C.Y.)
- Correspondence: (Z.L.); (X.L.); Tel.: +86-377-63-513-735 (Z.L.)
| |
Collapse
|
5
|
Design of Photocatalytic Functional Coatings Based on the Immobilization of Metal Oxide Particles by the Combination of Electrospinning and Layer-by-Layer Deposition Techniques. COATINGS 2022. [DOI: 10.3390/coatings12060862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work reports the design and characterization of functional photocatalytic coatings based on the combination of two different deposition techniques. In a first step, a poly(acrylic acid) + β-Cyclodextrin (denoted as PAA+ β-CD) electrospun fiber mat was deposited by using the electrospinning technique followed by a thermal treatment in order to provide an enhancement in the resultant adhesion and mechanical resistance. In a second step, a layer-by-layer (LbL) assembly process was performed in order to immobilize the metal oxide particles onto the previously electrospun fiber mat. In this context, titanium dioxide (TiO2) was used as the main photocatalytic element, acting as the cationic element in the multilayer LbL structure. In addition, two different metal oxides, such as tungsten oxide (WO3) and iron oxide (Fe2O3), were added into PAA anionic polyelectrolyte solution with the objective of optimizing the photocatalytic efficiency of the coating. All of the coatings were characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM) images, showing an increase in the original fiber diameter and a decrease in roughness of the mats because of the LbL second step. The variation in the wettability properties from a superhydrophilic surface to a less wettable surface as a function of the incorporation of the metal oxides was also observed by means of water contact angle (WCA) measurements. With the aim of analyzing the photocatalytic efficiency of the samples, degradation of methyl blue (MB) azo-dye was studied, showing an almost complete discoloration of the dye in the irradiated area. This study reports a novel combination method of two deposition techniques in order to obtain a functional, homogeneous and efficient photocatalytic coating.
Collapse
|
6
|
Photodegradation of Pharmaceutical Pollutants: New Photocatalytic Systems Based on 3D Printed Scaffold-Supported Ag/TiO2 Nanocomposite. Catalysts 2022. [DOI: 10.3390/catal12060580] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Due to the release of active pharmaceutical compounds in wastewater and their persistence in the environment, dangerous consequences can develop in the aquatic and terrestrial organisms. Chitosan/Ag/TiO2 3D printed scaffolds, at different Ag nanoparticle concentrations (10, 100, 1000 ppm) are investigated here as promising materials for photocatalytic degradation under the UV–Vis irradiation of pharmaceutical compounds in wastewater. As target drugs, amoxicillin, paracetamol and their 1:1 mix were selected. Ag nanoparticles increase the photocatalytic efficiency of the system based on titanium dioxide embedded in the chitosan scaffold: in the presence of Chitosan/Ag100/TiO2, the selected pharmaceuticals (PhCs), monitored by UV–Vis spectroscopy, are completely removed in about 2 h. The photodegradation products of the PhCs were identified by Liquid Chromatography–Mass Spectroscopy and assessed for their toxicological impact on six different bacterial strains: no antibacterial activity was found towards the tested strains. This new system based on Ag/TiO2 supported on 3D chitosan scaffolds may represent an effective strategy to reduce wastewater pollution by emerging contaminants.
Collapse
|
7
|
Zhu X, Qin F, Xia Y, Yang D, Feng W, Jiao Y. Three-Phase Mixed Titania Powder Modified by Silver and Silver Chloride with Enhanced Photocatalytic Activity under UV-Visible Light. NANOMATERIALS 2022; 12:nano12091599. [PMID: 35564308 PMCID: PMC9100623 DOI: 10.3390/nano12091599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022]
Abstract
Pure and Ag/AgCl-modified titania powders with anatase/rutile/brookite three-phase mixed structure were prepared by one-step hydrothermal method. The effects of Ag/Ti atomic percentages on the structure and photocatalytic performance of TiO2 were investigated. The results showed that pure TiO2 consisted of three phases, anatase, rutile, and brookite, and that Ag addition promoted the transformation from anatase to rutile. When the molar ratio of Ag/Ti reached 4%, the AgCl phase appeared. The addition of Ag had little effect on the optical absorption of TiO2; however, it did favor the separation of photogenerated electrons and holes. The results of photocatalytic experiments showed that after Ag addition, the degradation degree of rhodamine B (RhB) was enhanced. When the molar ratio of Ag/Ti was 4%, Ag/AgCl-modified TiO2 exhibited the highest activity, and the first-order reaction rate constant was 1.67 times higher than that of pure TiO2.
Collapse
Affiliation(s)
- Xiaodong Zhu
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (Y.X.); (D.Y.)
| | - Fengqiu Qin
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (Y.X.); (D.Y.)
| | - Yangwen Xia
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (Y.X.); (D.Y.)
| | - Daixiong Yang
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (Y.X.); (D.Y.)
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, China; (X.Z.); (F.Q.); (Y.X.); (D.Y.)
- Correspondence: (W.F.); (Y.J.)
| | - Yu Jiao
- School of Science, Xichang University, Xichang 615000, China
- Correspondence: (W.F.); (Y.J.)
| |
Collapse
|