1
|
Pei J, Palanisamy CP, Natarajan PM, Umapathy VR, Roy JR, Srinivasan GP, Panagal M, Jayaraman S. Curcumin-loaded polymeric nanomaterials as a novel therapeutic strategy for Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102393. [PMID: 38925479 DOI: 10.1016/j.arr.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) stands as a formidable challenge in modern medicine, characterized by progressive neurodegeneration, cognitive decline, and memory impairment. Despite extensive research, effective therapeutic strategies remain elusive. The antioxidant, anti-inflammatory, and neuroprotective properties of curcumin, found in turmeric, have demonstrated promise. The poor bioavailability and rapid systemic clearance of this drug limit its clinical application. This comprehensive review explores the potential of curcumin-loaded polymeric nanomaterials as an innovative therapeutic avenue for AD. It delves into the preparation and characteristics of diverse polymeric nanomaterial platforms, including liposomes, micelles, dendrimers, and polymeric nanoparticles. Emphasis is placed on how these platforms enhance curcumin's bioavailability and enable targeted delivery to the brain, addressing critical challenges in AD treatment. Mechanistic insights reveal how these nanomaterials modulate key AD pathological processes, including amyloid-beta aggregation, tau phosphorylation, oxidative stress, and neuroinflammation. The review also highlighted the preclinical studies demonstrate reduced amyloid-beta plaques and neuroinflammation, alongside improved cognitive function, while clinical trials show promise in enhancing curcumin's bioavailability and efficacy in AD. Additionally, it addresses the challenges of clinical translation, such as regulatory issues, large-scale production, and long-term stability. By synthesizing recent advancements, this review underscores the potential of curcumin-loaded polymeric nanomaterials to offer a novel and effective therapeutic approach for AD, aiming to guide future research and development in this field.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
2
|
Xiao Y, Wei Q, Du L, Guo Z, Li Y. In vitro evaluation and in situ intestinal absorption characterisation of paeoniflorin nanoparticles in a rat model. RSC Adv 2024; 14:22113-22122. [PMID: 39005248 PMCID: PMC11240214 DOI: 10.1039/d4ra03419h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose: the aim of this study was to improve the stability and bioavailability of paeoniflorin (PF) by using nanoparticle encapsulation technology. Methods: paeoniflorin nanoparticles (PF NPs) were prepared with PLGA as the carrier using the compound emulsion method. The nanoparticles were characterised by using a Malvern laser particle sizer, transmission electron microscope (TEM), X-ray diffraction (XRD) analyser, and Fourier-transform infrared (FT-IR) spectrometry. The PF NPs were subjected to a series of stability investigations (such as for 4 °C storage stability, pH stability, and thermal stability), lyophilisation protection technology investigations, and in vitro release studies. Finally, the intestinal absorption properties of PF and PF NPs were studied by the in situ single-pass intestinal perfusion (SPIP) rat model, using the effective permeability coefficient (P eff) and the absorption rate constant (K a) as relevant indexes. Results: the prepared nanoparticles had a particle size of 105.0 nm with blue opalescent, rounded morphology, uniform size, good stability and slow release. We found that 4% alginate was the best lyoprotectant for the PF NPs. In the intestinal absorption experiments, P eff was higher for the PF NPs group compared with the original PF material drug group in all intestinal segments (P < 0.05), and the absorption rate constant K a increased with the increase in the drug concentration. Conclusion: the nanoparticles produced by this method have good stability and a slow-release effect; they can thus improve the absorption of PF in rat intestines, helping improve the stability and bioavailability of PF and enhancing its pharmacological effects.
Collapse
Affiliation(s)
- Yifei Xiao
- School of Pharmacy, Hunan University of Chinese Medicine Changsha 410208 China
| | - Qidong Wei
- School of Pharmacy, Hunan University of Chinese Medicine Changsha 410208 China
| | - Lixin Du
- School of Pharmacy, Hunan University of Chinese Medicine Changsha 410208 China
| | - Zhihua Guo
- School of Chinese Medicine, Hunan University of Chinese Medicine Changsha 410208 China
| | - Ya Li
- School of Pharmacy, Hunan University of Chinese Medicine Changsha 410208 China
| |
Collapse
|
3
|
Ye ZW, Yang QY, Lin QH, Liu XX, Li FQ, Xuan HD, Bai YY, Huang YP, Wang L, Wang F. Progress of nanopreparation technology applied to volatile oil drug delivery systems. Heliyon 2024; 10:e24302. [PMID: 38293491 PMCID: PMC10825498 DOI: 10.1016/j.heliyon.2024.e24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Traditional Chinese medicine volatile oil has a long history and possesses extensive pharmacological activity. However, volatile oils have characteristics such as strong volatility, poor water solubility, low bioavailability, and poor targeting, which limit their application. The use of volatile oil nano drug delivery systems can effectively improve the drawbacks of volatile oils, enhance their bioavailability and chemical stability, and reduce their volatility and toxicity. This article first introduces the limitations of the components of traditional Chinese medicine volatile oils, discusses the main classifications and latest developments of volatile oil nano formulations, and briefly describes the preparation methods of traditional Chinese medicine volatile oil nano formulations. Secondly, the limitations of nano formulation technology are discussed, along with future challenges and prospects. A deeper understanding of the role of nanotechnology in traditional Chinese medicine volatile oils will contribute to the modernization of volatile oils and broaden their application value.
Collapse
Affiliation(s)
- Zu-Wen Ye
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Qi-Yue Yang
- Affiliated Hospital of Chengdu University of Chinese Medicine, 610072, China
| | - Qiao-Hong Lin
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Xiao-Xia Liu
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Feng-Qin Li
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Hong-Da Xuan
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ying-Yan Bai
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ya-Peng Huang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Le Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Fang Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| |
Collapse
|
4
|
Grandhi S, Al-Tabakha M, Avula PR. Enhancement of Liver Targetability through Statistical Optimization and Surface Modification of Biodegradable Nanocapsules Loaded with Lamivudine. Adv Pharmacol Pharm Sci 2023; 2023:8902963. [PMID: 38029229 PMCID: PMC10676277 DOI: 10.1155/2023/8902963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/29/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
The intention of the current work was to develop and optimize the formulation of biodegradable polymeric nanocapsules for lamivudine (LMV) in order to obtain desired physical characteristics so as to have improved liver targetability. Nanocapsules were prepared in this study as aqueous-core nanocapsules (ACNs) with poly(lactide-co-glycolide) using a modified multiple emulsion technique. LMV was taken as a model drug to investigate the potential of ACNs developed in this work in achieving the liver targetability. Three formulations factors were chosen and 33 factorial design was adopted. The selected formulation factors were optimized statistically so as to have the anticipated characteristics of the ACNs viz. maximum entrapment efficiency, minimum particle size, and less drug release rate constant. The optimized LMV-ACNs were found to have 71.54 ± 1.93% of entrapment efficiency and 288.36 ± 2.53 nm of particle size with zeta potential of -24.7 ± 1.2 mV and 0.095 ± 0.006 h-1 of release rate constant. This optimized formulation was subjected to surface modification by treating with sodium lauryl sulphate (SLS), which increased the zeta potential to a maximum of -41.6 ± 1.3 mV at a 6 mM concentration of SLS. The results of in vivo pharmacokinetics from blood and liver tissues indicated that hepatic bioavailability of LMV was increased from 13.78 ± 3.48 μg/mL ∗ h for LMV solution to 32.94 ± 5.12 μg/mL ∗ h for the optimized LMV-ACNs and to 54.91 ± 6.68 μg/mL ∗ h for the surface-modified LMV-ACNs.
Collapse
Affiliation(s)
- Srikar Grandhi
- Department of Pharmaceutical Sciences, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur 522213, India
| | - Moawia Al-Tabakha
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, P.O. Box 346, Ajman, UAE
- Centre of Medical and Bio-Allied Health Sciences Research Centre, Ajman University, P.O. Box 346, Ajman, UAE
| | - Prameela Rani Avula
- University College of Pharmaceutical Sciences, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522510, India
| |
Collapse
|
5
|
Motsoene F, Abrahamse H, Dhilip Kumar SS. Multifunctional lipid-based nanoparticles for wound healing and antibacterial applications: A review. Adv Colloid Interface Sci 2023; 321:103002. [PMID: 37804662 DOI: 10.1016/j.cis.2023.103002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Wound healing primarily involves preventing severe infections, accelerating healing, and reducing pain and scarring. Therefore, the multifunctional application of lipid-based nanoparticles (LBNs) has received considerable attention in drug discovery due to their solid or liquid lipid core, which increases their ability to provide prolonged drug release, reduce treatment costs, and improve patient compliance. LBNs have also been used in medical and cosmetic practices and formulated for various products based on skin type, disease conditions, administration product costs, efficiency, stability, and toxicity; therefore, understanding their interaction with biological systems is very important. Therefore, it is necessary to perform an in-depth analysis of the results from a comprehensive characterization process to produce lipid-based drug delivery systems with desired properties. This review will provide detailed information on the different types of LBNs, their formulation methods, characterisation, antimicrobial activity, and application in various wound models (both in vitro and in vivo studies). Also, the clinical and commercial applications of LBNs are summarized.
Collapse
Affiliation(s)
- Fezile Motsoene
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|