1
|
Rezaei M, Mehdinia A. A Review on the Applications of Quantum Dots in Sample Preparation. J Sep Sci 2025; 48:e70061. [PMID: 39823177 DOI: 10.1002/jssc.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/30/2024] [Accepted: 12/06/2024] [Indexed: 01/19/2025]
Abstract
In recent years, despite significant advances in preconcentration and preparation techniques that have led to efficient recovery and accurate measurement of target compounds. There is still a need to develop adsorbents with unique and efficient features such as high pore volume and surface area, reactivity, easy synthesis, low toxicity, and compatibility with the environment, which increase the adsorption capacity and increase extraction efficiency. Semiconductor nanocrystals called quantum dots (QDs) with a size of less than 10 nm are three-dimensional nanoparticles with a spherical, rod, or disc structure that have significant potential in extraction as adsorbents due to their excellent properties such as low toxicity, reactivity, environmental friendliness, and hydrophilic and hydrophobic interactions. One of the most basic issues in the development of adsorbents is to increase the effective surface and, as a result, their extraction efficiency. QDs, having an effective surface much higher than conventional nanomaterials, are a suitable option for extracting target compounds in different environments. This work comprehensively reviews QD-based extraction methods and surface modification strategies of QDs based on functional groups, ligands, and materials from 2013 to 2024. In addition, the applications of QD-based composites for the extraction of organic and inorganic analytes (residues of drugs in human blood and plasma, toxins, pesticides, pollutants from chemical industries, heavy metals, etc.) in different matrices are investigated.
Collapse
Affiliation(s)
- Mahdie Rezaei
- School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Ali Mehdinia
- Department of Ocean Science, Iranian National Institute for Oceanography and Atmospheric Science, Tehran, Iran
| |
Collapse
|
2
|
Li H, Dong P, Long A, Feng S, Fan J, Xu S. Cellulose Nanocrystals Induced Loose and Porous Graphite Phase Carbon Nitride/Porous Carbon Composites for Capturing and Determining of Organochlorine Pesticides from Water and Fruit Juice by Solid-Phase Microextraction. Polymers (Basel) 2023; 15:polym15092218. [PMID: 37177364 PMCID: PMC10181374 DOI: 10.3390/polym15092218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/30/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
Herein, novel, loose, and porous graphite phase carbon nitride/porous carbon (g-C3N4@PC) composites were prepared by decorating cellulose nanocrystals (CNCs). The characterization results demonstrate that the as-prepared composites presented high specific surface areas, porous structures, and abundant chemical groups, with the modification of CNCs. In view of the unique advantages, g-C3N4@PC was used as the coating material for the solid-phase microextraction (SPME) of organochlorine pesticides (OCPs) in water and juice samples. The g-C3N4@PC-coated fibers showed better extraction efficiencies than commercial fibers (100/7 μm PDMS and PA) toward the OCPs, with the enrichment factors of the g-C3N4@PC-coated fibers 5-30 times higher than the latter. Using a gas chromatography-mass spectrometry (GC-MS) instrument, the g-C3N4@PC-coated fibers exhibited a gratifying analytical performance for determining low concentrations of OCPs, with a wide linear range (0.1-1600 ng L-1 for water; 0.1-1000 ng L-1 for juice), low limits of detection (0.0141-0.0942 ng L-1 for water; 0.0245-0.0777 ng L-1 for juice), and good reproducibility and repeatability in optimal conditions. The established method showed good sensitivity and recovery in the determination of OCPs in the water and fruit juice samples, which displayed broad prospects for analyzing organic pollutants from environmental samples.
Collapse
Affiliation(s)
- Huimin Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Panlong Dong
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Anying Long
- 113 Geological Brigade, Bureau of Geology and Mineral Exploration and Development Guizhou Province, Liupanshui 553000, China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Jing Fan
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
3
|
Zheng J, Kuang Y, Zhou S, Gong X, Ouyang G. Latest Improvements and Expanding Applications of Solid-Phase Microextraction. Anal Chem 2023; 95:218-237. [PMID: 36625125 DOI: 10.1021/acs.analchem.2c03246] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Juan Zheng
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yixin Kuang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Suxin Zhou
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinying Gong
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Gangfeng Ouyang
- Ministry of Education (MOE) Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry/School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Long A, Liu H, Xu S, Feng S, Shuai Q, Hu S. Polyacrylic Acid Functionalized Biomass-Derived Carbon Skeleton with Highly Porous Hierarchical Structures for Efficient Solid-Phase Microextraction of Volatile Halogenated Hydrocarbons. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4376. [PMID: 36558229 PMCID: PMC9784554 DOI: 10.3390/nano12244376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
In this study, polyacrylic acid functionalized N-doped porous carbon derived from shaddock peels (PAA/N-SPCs) was fabricated and used as a solid-phase microextraction (SPME) coating for capturing and determining volatile halogenated hydrocarbons (VHCs) from water. Characterizations results demonstrated that the PAA/N-SPCs presented a highly meso/macro-porous hierarchical structure consisting of a carbon skeleton. The introduction of PAA promoted the formation of polar chemical groups on the carbon skeleton. Consequently, large specific surface area, highly hierarchical structures, and abundant chemical groups endowed the PAA/N-SPCs, which exhibited superior SPME capacities for VHCs in comparison to pristine N-SPCs and commercial SPME coatings. Under the optimum extraction conditions, the proposed analytical method presented wide linearity in the concentration range of 0.5-50 ng mL-1, excellent reproducibility with relative standard deviations of 5.8%-7.2%, and low limits of detection varying from 0.0005 to 0.0086 ng mL-1. Finally, the proposed method was applied to analyze VHCs from real water samples and observed satisfactory recoveries ranging from 75% to 116%. This study proposed a novel functionalized porous carbon skeleton as SPME coating for analyzing pollutants from environmental samples.
Collapse
Affiliation(s)
- Anying Long
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- 113 Geological Brigade, Bureau of Geology and Mineral Exploration and Development Guizhou Province, Liupanshui 553000, China
| | - Hailin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Qin Shuai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shenghong Hu
- State Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
5
|
Xu S, Liu H, Long A, Feng S, Chen CP. In-situ synthesis of carbon dots embedded wrinkled-mesoporous silica microspheres for efficiently capturing and monitoring organochlorine pesticides from water and fruit juice. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Li D, Li M, Zhu S, Gao Y, Mu M, Zhang N, Wang Y, Lu M. Porous Hexagonal Boron Nitride as Solid-Phase Microextraction Coating Material for Extraction and Preconcentration of Polycyclic Aromatic Hydrocarbons from Soil Sample. NANOMATERIALS 2022; 12:nano12111860. [PMID: 35683716 PMCID: PMC9182517 DOI: 10.3390/nano12111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022]
Abstract
Sample pretreatment plays important role in the analysis and detection of trace pollutants in complex matrices, such as environmental and biological samples. The adsorption materials of sample pretreatment receive considerable attention, which has a significant effect on the sensitivity and selectivity of the analytical method. In this work, the porous hexagonal boron nitride (h-BN) was utilized as a coating material of solid-phase microextraction (SPME) to extract and preconcentrate polycyclic aromatic hydrocarbons (PAHs) prior to separation and detection with GC-FID. Attributed to the multiple interactions including hydrophobicity, hydrogen bonding and strong π–π interaction, the h-BN coating showed excellent extraction performance for PAHs. Under the optimal conditions, the method showed the linear relationship in the range of 0.1–50 ng mL−1 for acenaphthene, 0.05–50 ng mL−1 for pyrene, and 0.02–50 ng mL−1 for fluorene, phenanthrene and anthracene with a correlation coefficient (R2) not lower than 0.9910. The enrichment factors were achieved between 1526 and 4398 for PAHs with h-BN as SPME fiber coating. The detection limits were obtained in the range of 0.004–0.033 ng mL−1, which corresponds to 0.08–0.66 ng g−1 for soil. The method was successfully applied to analysis of real soil samples. The recoveries were determined between 78.0 and 120.0% for two soil samples. The results showed that h-BN material provided a promising alternative in sample pretreatment and analysis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ning Zhang
- Correspondence: (N.Z.); (M.L.); Tel./Fax: +86-371-238-815-89 (M.L.)
| | | | - Minghua Lu
- Correspondence: (N.Z.); (M.L.); Tel./Fax: +86-371-238-815-89 (M.L.)
| |
Collapse
|