1
|
Lippy BE, Brooks SB, Cooper MR, Burrelli LG, Saldivar A, West GH. Characterizing applications, exposure risks, and hazard communication for engineered nanomaterials in construction. Am J Ind Med 2024. [PMID: 38837413 DOI: 10.1002/ajim.23618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Engineered nanomaterials (ENMs) may pose health risks to workers. Objectives were to characterize ENM applications in construction, identify exposure scenarios, and evaluate the quality of safety data sheets (SDSs) for nano-enabled construction products. METHODS SDSs and product data were obtained from a public database of nano-enabled construction products. Descriptive statistics were calculated for affected trades, product categories, and types of ENMs. A sample of SDSs (n = 33) was evaluated using modified criteria developed by NIOSH researchers. Bulk analysis via transmission electron microscopy characterized nanoparticles in a subset of products. RESULTS Companies report using >50 ENMs in construction products. ENM composition could not be determined via SDSs for 38.1% of the 907 products examined. Polymers and metal oxides tied for most frequently reported ENMs (n = 87, 9.6%). Nano silica, graphene, carbon nanotubes, and silver nanoparticles were also frequently reported. Most of the products were paints and coatings (n = 483, 53.3%), followed by pre-market additives, cementitious materials, insulation, and lubricants. Workers in twenty construction trades are likely to handle nano-enabled products, these particularly encompass cement and brick masons, painters, laborers, carpenters, glaziers, and insulators. A wide range of exposure scenarios were identified. SDSs were classified as satisfactory (18%), in need of improvement (12%), or in need of significant improvement (70%). Bulk analyses revealed discrepancies between actual ENM composition and those in SDSs. DISCUSSION AND CONCLUSION There has been significant progress investigating risks to construction workers posed by ENMs, but SDSs need major improvements. This study provides new insights on the use of ENMs in construction, exposure risks, and hazard communication.
Collapse
Affiliation(s)
- Bruce E Lippy
- Safety and Health Research Department, CPWR-The Center for Construction Research and Training, Silver Spring, Maryland, USA
- The Lippy Group LLC, Catonsville, Maryland, USA
| | - Sara B Brooks
- Safety and Health Research Department, CPWR-The Center for Construction Research and Training, Silver Spring, Maryland, USA
| | - Michael R Cooper
- Safety and Health Research Department, CPWR-The Center for Construction Research and Training, Silver Spring, Maryland, USA
| | | | | | - Gavin H West
- Safety and Health Research Department, CPWR-The Center for Construction Research and Training, Silver Spring, Maryland, USA
| |
Collapse
|
2
|
Devaraji M, Thanikachalam PV, Elumalai K. The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2024; 5:80-99. [PMID: 39416693 PMCID: PMC11446360 DOI: 10.1016/j.biotno.2024.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 10/19/2024]
Abstract
Nanotechnology is a modern scientific discipline that uses nanoparticles of metals like copper, silver, gold, platinum, and zinc for various applications. Copper oxide nanoparticles (CuONPs) are effective in biomedical settings, such as killing bacteria, speeding up reactions, stopping cancer cells, and coating surfaces. These inorganic nanostructures have a longer shelf life than their organic counterparts and are chemically inert and thermally stable. However, commercial synthesis of NPs often involves harmful byproducts and hazardous chemicals. Green synthesis for CuONPs offers numerous benefits, including being clean, harmless, economical, and environmentally friendly. Using naturally occurring organisms like bacteria, yeast, fungi, algae, and plants can make CuONPs more environmentally friendly. CuONPs are expected to be used in nanomedicine due to their potent antimicrobial properties and disinfecting agents for infectious diseases. This comprehensive review looks to evaluate research articles published in the last ten years that investigate the antioxidant, anticancer, antibacterial, wound healing, dental application and catalytic properties of copper nanoparticles generated using biological processes. Utilising the scientific approach of large-scale data analytics. However, their toxic effects on vertebrates and invertebrates raise concerns about their use for diagnostic and therapeutic purposes. Therefore, biocompatibility and non-toxicity are crucial for selecting nanoparticles for clinical research.
Collapse
Affiliation(s)
- Mahalakshmi Devaraji
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Punniyakoti V. Thanikachalam
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Karthikeyan Elumalai
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
3
|
Kühnel D, Krug HF, Steinbach C, Nau K. The DaNa projects: public communication of (nano)material safety data-from conspiracy theories to study quality. FRONTIERS IN TOXICOLOGY 2024; 6:1382458. [PMID: 38863790 PMCID: PMC11165057 DOI: 10.3389/ftox.2024.1382458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/02/2024] [Indexed: 06/13/2024] Open
Abstract
In this perspective, the authors give their view on the developments and experiences on communicating on (nano)materials safety. We would like to share our experiences with the scientific community in order to make them useful for future communication activities. We present the long-term work of the science communication projects DaNa, DaNa2.0 and DaNa4.0, running from 2009 to 2023. Starting in the early 2000s with the beginnings of nanotechnology research, communication on the safety of nanomaterials with the public was still very new and faced the projects with many challenges. Today, science communication is indispensable for the dissemination of scientific findings and a fact-based approach like the DaNa "Knowledge Base Materials" creates a trustworthy dialogue with the public. This long-term project series has made a significant contribution to communication on the safety of nanomaterials, perhaps even the largest among publicly funded project series worldwide.
Collapse
Affiliation(s)
- Dana Kühnel
- Helmholtz Centre for Environmental Research (UFZ), Department Ecotoxicology (ETOX), Leipzig, Germany
| | | | - Christoph Steinbach
- Society for Chemical Engineering and Biotechnology (DECHEMA), Frankfurt am Main, Germany
| | - Katja Nau
- Karlsruhe Institute of Technology (KIT), Institute for Automation and Applied Informatics (IAI), Karlsruhe, Germany
| |
Collapse
|
4
|
van Rijn JPM, Martens M, Ammar A, Cimpan MR, Fessard V, Hoet P, Jeliazkova N, Murugadoss S, Vinković Vrček I, Willighagen EL. From papers to RDF-based integration of physicochemical data and adverse outcome pathways for nanomaterials. J Cheminform 2024; 16:49. [PMID: 38693555 PMCID: PMC11064368 DOI: 10.1186/s13321-024-00833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/23/2024] [Indexed: 05/03/2024] Open
Abstract
Adverse Outcome Pathways (AOPs) have been proposed to facilitate mechanistic understanding of interactions of chemicals/materials with biological systems. Each AOP starts with a molecular initiating event (MIE) and possibly ends with adverse outcome(s) (AOs) via a series of key events (KEs). So far, the interaction of engineered nanomaterials (ENMs) with biomolecules, biomembranes, cells, and biological structures, in general, is not yet fully elucidated. There is also a huge lack of information on which AOPs are ENMs-relevant or -specific, despite numerous published data on toxicological endpoints they trigger, such as oxidative stress and inflammation. We propose to integrate related data and knowledge recently collected. Our approach combines the annotation of nanomaterials and their MIEs with ontology annotation to demonstrate how we can then query AOPs and biological pathway information for these materials. We conclude that a FAIR (Findable, Accessible, Interoperable, Reusable) representation of the ENM-MIE knowledge simplifies integration with other knowledge. SCIENTIFIC CONTRIBUTION: This study introduces a new database linking nanomaterial stressors to the first known MIE or KE. Second, it presents a reproducible workflow to analyze and summarize this knowledge. Third, this work extends the use of semantic web technologies to the field of nanoinformatics and nanosafety.
Collapse
Affiliation(s)
- Jeaphianne P M van Rijn
- Dept of Bioinformatics, BiGCaT, NUTRIM, FHML, Maastricht University, Maastricht, The Netherlands
| | - Marvin Martens
- Dept of Bioinformatics, BiGCaT, NUTRIM, FHML, Maastricht University, Maastricht, The Netherlands
| | - Ammar Ammar
- Dept of Bioinformatics, BiGCaT, NUTRIM, FHML, Maastricht University, Maastricht, The Netherlands
| | - Mihaela Roxana Cimpan
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Valerie Fessard
- Fougères Laboratory, Anses, French Agency for Food, Environmental and Occupational Health and Safety, Toxicology of Contaminants Unit, Fougères, France
| | - Peter Hoet
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | | | - Sivakumar Murugadoss
- Laboratory of Toxicology, Unit of Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
- SD Chemical and Physical Health Risks, Brussels, Belgium
| | | | - Egon L Willighagen
- Dept of Bioinformatics, BiGCaT, NUTRIM, FHML, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Zhang C, Liu F, Liu C, Tian G. Data-driven low-carbon transformation management for manufacturing enterprises: an eco-efficiency perspective. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102519-102530. [PMID: 37670089 DOI: 10.1007/s11356-023-29573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/25/2023] [Indexed: 09/07/2023]
Abstract
The low-carbon transformation of manufacturing enterprises is considered to be imperative to achieve carbon neutrality. Therefore, we propose a data-driven strategy to achieve a low-carbon transformation of manufacturing enterprises from an eco-efficiency perspective. Following the collection of input (energy, materials, equipment, R&D, and services) and output (waste and products) data from production systems of manufacturing enterprises, an ecological efficiency model of manufacturing enterprise production system was constructed from the perspective of carbon emissions, thus allowing the quantitative evaluation of the ecological efficiency of the production system. Furthermore, a "measurable, evaluable, and optimized" low-carbon transformation and upgrading method for manufacturing enterprise production system was established. Finally, through the production practice data of an enterprise from 2017 to 2021, the feasibility and effectiveness of this method were verified. The results show that this method can effectively improve the ecological efficiency of enterprises by 3.6% and reduce waste emissions by 12%. Our study provides new tools for improving the ecological efficiency of manufacturing systems, along with theoretical and methodological support to manufacturing enterprises for low-carbon transformation.
Collapse
Affiliation(s)
- Cuixia Zhang
- College of Mechanical and Electronic Engineering, Suzhou University, Suzhou, 234000, China
| | - Fan Liu
- School of Economics and Management, China University of Mining and Technology, XuZhou, 221116, China.
- Business School, Suzhou University, Suzhou, 234000, China.
| | - Conghu Liu
- College of Mechanical and Electronic Engineering, Suzhou University, Suzhou, 234000, China
| | - Guangdong Tian
- School of Mechanical-Electrical and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
6
|
Toropova AP, Toropov AA, Fjodorova N. In Silico Simulation of Impacts of Metal Nano-Oxides on Cell Viability in THP-1 Cells Based on the Correlation Weights of the Fragments of Molecular Structures and Codes of Experimental Conditions Represented by Means of Quasi-SMILES. Int J Mol Sci 2023; 24:ijms24032058. [PMID: 36768396 PMCID: PMC9917241 DOI: 10.3390/ijms24032058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
A simulation of the effect of metal nano-oxides at various concentrations (25, 50, 100, and 200 milligrams per millilitre) on cell viability in THP-1 cells (%) based on data on the molecular structure of the oxide and its concentration is proposed. We used a simplified molecular input-line entry system (SMILES) to represent the molecular structure. So-called quasi-SMILES extends usual SMILES with special codes for experimental conditions (concentration). The approach based on building up models using quasi-SMILES is self-consistent, i.e., the predictive potential of the model group obtained by random splits into training and validation sets is stable. The Monte Carlo method was used as a basis for building up the above groups of models. The CORAL software was applied to building the Monte Carlo calculations. The average determination coefficient for the five different validation sets was R2 = 0.806 ± 0.061.
Collapse
Affiliation(s)
- Alla P. Toropova
- Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156 Milano, Italy
- Correspondence: ; Tel.: +39-02-3901-4595
| | - Andrey A. Toropov
- Laboratory of Environmental Chemistry and Toxicology, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri, 2, 20156 Milano, Italy
| | | |
Collapse
|
7
|
Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl Microbiol Biotechnol 2023; 107:1039-1061. [PMID: 36635395 PMCID: PMC9838533 DOI: 10.1007/s00253-023-12364-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/27/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
Versatile nature of copper oxide nanoparticles (CuO NPs) has made them an imperative nanomaterial being employed in nanomedicine. Various physical, chemical, and biological methodologies are in use for the preparation of CuO NPs. The physicochemical and biological properties of CuO NPs are primarily affected by their method of fabrication; therefore, selectivity of a synthetic technique is immensely important that makes these NPs appropriate for a specific biomedical application. The deliberate use of CuO NPs in biomedicine questions their biocompatible nature. For this reason, the present review has been designed to focus on the approaches employed for the synthesis of CuO NPs; their biomedical applications highlighting antimicrobial, anticancer, and antioxidant studies; and most importantly, the in vitro and in vivo toxicity associated with these NPs. This comprehensive overview of CuO NPs is unique and novel as it emphasizes on biomedical applications of CuO NPs along with its toxicological assessments which would be useful in providing core knowledge to researchers working in these domains for planning and conducting futuristic studies. KEY POINTS: • The recent methods for fabrication of CuO nanoparticles have been discussed with emphasis on green synthesis methods for different biomedical approaches. • Antibacterial, antioxidant, anticancer, antiparasitic, antidiabetic, and antiviral properties of CuO nanoparticles have been explained. • In vitro and in vivo toxicological studies of CuO nanoparticles exploited along with their respective mechanisms.
Collapse
|
8
|
A weight of evidence review of the genotoxicity of titanium dioxide (TiO2). Regul Toxicol Pharmacol 2022; 136:105263. [DOI: 10.1016/j.yrtph.2022.105263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
|
9
|
Krug HF. A Systematic Review on the Hazard Assessment of Amorphous Silica Based on the Literature From 2013 to 2018. Front Public Health 2022; 10:902893. [PMID: 35784253 PMCID: PMC9240267 DOI: 10.3389/fpubh.2022.902893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/11/2022] [Indexed: 11/14/2022] Open
Abstract
Background Nanomaterials are suspected of causing health problems, as published studies on nanotoxicology indicate. On the other hand, some of these materials, such as nanostructured pyrogenic and precipitated synthetic amorphous silica (SAS) and silica gel, have been used for decades without safety concerns in industrial, commercial, and consumer applications. However, in addition to many in vivo and in vitro studies that have failed to demonstrate the intrinsic toxicity of SAS, articles periodically emerge, in which biological effects of concern have been described. Even though most of these studies do not meet high-quality standards and do not always use equivalent test materials or standardized test systems, the results often trigger substance re-evaluation. To put the results into perspective, an extensive literature study was carried out and an example of amorphous silica will be used to try to unravel the reliability from the unreliable results. Methods A systematic search of studies on nanotoxicological effects has been performed covering the years 2013 to 2018. The identified studies have been evaluated for their quality regarding material and method details, and the data have been curated and put into a data collection. This review deals only with investigations on amorphous silica. Results Of 18,162 publications 1,217 have been selected with direct reference to experiments with synthetically produced amorphous silica materials. The assessment of these studies based on defined criteria leads to a further reduction to 316 studies, which have been included in this systematic review. Screening for quality with well-defined quantitative criteria following the GUIDE nano concept reveals only 27.3% has acceptable quality. Overall, the in vitro and in vivo data showed low or no toxicity of amorphous silica. The data shown do not support the hypothesis of dependency of biological effects on the primary particle size of the tested materials. Conclusion This review demonstrates the relatively low quality of most studies published on nanotoxicological issues in the case of amorphous silica. Moreover, mechanistic studies are often passed off or considered toxicological studies. In general, standardized methods or the Organization for Economic Cooperation and Development (OECD) guidelines are rarely used for toxicological experiments. As a result, the significance of the published data is usually weak and must be reevaluated carefully before using them for regulatory purposes.
Collapse
Affiliation(s)
- Harald F. Krug
- NanoCASE GmbH, Engelburg, Switzerland
- Empa—Swiss Federal Laboratories for Science and Materials Technology, St. Gallen, Switzerland
- Faculty of Medicine, University of Berne, Bern, Switzerland
- *Correspondence: Harald F. Krug ; orcid.org/0000-0001-9318-095X
| |
Collapse
|