1
|
Zhou M, Li R, Hua H, Dai Y, Yin Z, Li L, Zeng J, Yang M, Zhao J, Tan R. The role of tetrahydrocurcumin in disease prevention and treatment. Food Funct 2024; 15:6798-6824. [PMID: 38836693 DOI: 10.1039/d3fo05739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In recent decades, natural compounds derived from herbal medicine or dietary sources have played important roles in prevention and treatment of various diseases and have attracted more and more attention. Curcumin, extracted from the Curcumae Longae Rhizoma and widely used as food spice and coloring agent, has been proven to possess high pharmacological value. However, the pharmacological application of curcumin is limited due to its poor systemic bioavailability. As a major active metabolite of curcumin, tetrahydrocurcumin (THC) has higher bioavailability and stability than curcumin. Increasing evidence confirmed that THC had a wide range of biological activities and significant treatment effects on diseases. In this paper, we reviewed the research progress on the biological activities and therapeutic potential of THC on different diseases such as neurological disorders, metabolic syndromes, cancers, and inflammatory diseases. The extensive pharmacological effects of THC involve the modulation of various signaling transduction pathways including MAPK, JAK/STAT, NF-κB, Nrf2, PI3K/Akt/mTOR, AMPK, Wnt/β-catenin. In addition, the pharmacokinetics, drug combination and toxicology of THC were discussed, thus providing scientific basis for the safe application of THC and the development of its dietary supplements and drugs.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Hua
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Mengni Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
- National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
2
|
Karami H, Niavand MR, Haddadi R, Noriyan A, Vafaei SY. Development of a hydrogel containing bisabolol-loaded nanocapsules for the treatment of atopic dermatitis in a Balb/c mice model. Int J Pharm 2024; 656:124029. [PMID: 38527566 DOI: 10.1016/j.ijpharm.2024.124029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
α-Bisabolol (αBIS), a plant-derived compound with anti-inflammatory properties, is potentially a therapeutic agent for Atopic dermatitis. However, its poor water solubility and photoinstability limit its topical application. Therefore, the present study, aimed to develop cationic polymeric nanocapsules of αBIS to improve its skin delivery, photostability, and therapeutic efficacy. The αBIS-loaded nanocapsules were prepared using the solvent displacement technique. A Box-Behnken (BB) design was employed to statistically optimize formulation variables and αBIS-loaded nanocapsules characterized by particle size, surface charge and encapsulation efficiency. The optimal formulation was selected, and the spherical shape of the nanocapsules was confirmed by scanning electron microscopy (SEM). Furthermore, hydrogel containing αBIS-loaded nanocapsules was prepared by thickening of nanocapsule suspension with Carbopol 934 and evaluated for rheology, in vitro drug release and skin permeation. Furthermore, a mice model of atopic dermatitis was used to evaluate the anti-inflammatory potential of the hydrogels. The optimal formulation displayed a spherical morphology under scanning electron microscopy (SEM) with an optimum particle size of 133.00 nm, polydispersity index (PDI) of 0.12, high EE% of 93 %, and improved optical stability of αBIS in the prepared nanocapsules compared to the free drug. The nano-based hydrogels demonstrated non-Newtonian pseudoplastic behavior and an increased αBIS in vitro release profile without causing skin irritation in rabbits. Drug retention within the dermis and epidermis layers significantly surpassed that of drug-free hydrogel. Moreover, in vivo histopathological studies and myeloperoxidase (MPO) enzyme activity, revealed that hydrogel containing bisabolol nanocapsules exhibited The best anti-inflammatory effect. The results showed that hydrogels containing bisabolol nanocapsules markedly alleviated dermatitis-related inflammation and reduced skin thickness in Balb/c mice. Our findings support nanocapsules as an effective drug delivery system to enhance αBIS stability, bioavailability, and therapeutic efficacy in AD treatment.
Collapse
Affiliation(s)
- Homa Karami
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Niavand
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rasool Haddadi
- Department of Toxicology and Pharmacology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Noriyan
- Department of Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Yaser Vafaei
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Fu Z, Gu Q, Wang L, Chen L, Zhou L, Jin Q, Li T, Zhao Y, Wu S, Luo X, Jin T, Guo C. Cell-free fat extract regulates oxidative stress and alleviates Th2-mediated inflammation in atopic dermatitis. Front Bioeng Biotechnol 2024; 12:1373419. [PMID: 38737538 PMCID: PMC11082312 DOI: 10.3389/fbioe.2024.1373419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease that significantly affects patients' quality of life. This study aimed to evaluate the therapeutic potential of cell-free fat extract (FE) in AD. In this study, the therapeutic effect of DNCB-induced AD mouse models was investigated. Dermatitis scores and transepidermal water loss (TEWL) were recorded to evaluate the severity of dermatitis. Histological analysis and cytokines measurement were conducted to assess the therapeutic effect. Additionally, the ability of FE to protect cells from ROS-induced damage and its ROS scavenging capacity both in vitro and in vivo were investigated. Furthermore, we performed Th1/2 cell differentiation with and without FE to elucidate the underlying therapeutic mechanism. FE reduced apoptosis and cell death of HaCat cells exposed to oxidative stress. Moreover, FE exhibited concentration-dependent antioxidant activity and scavenged ROS both in vitro and vivo. Treatment with FE alleviated AD symptoms in mice, as evidenced by improved TEWL, restored epidermis thickness, reduced mast cell infiltration, decreased DNA oxidative damage and lower inflammatory cytokines like IFN-γ, IL-4, and IL-13. FE also inhibited the differentiation of Th2 cells in vitro. Our findings indicate that FE regulates oxidative stress and mitigates Th2-mediated inflammation in atopic dermatitis by inhibiting Th2 cell differentiation, suggesting that FE has the potential as a future treatment option for AD.
Collapse
Affiliation(s)
- Zexin Fu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qinhao Gu
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Lu Wang
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Lulu Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Liuyi Zhou
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Qiang Jin
- Hangzhou Normal University Division of Health Sciences, Hangzhou, China
| | - Ting Li
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Ye Zhao
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Sufan Wu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xuejiao Luo
- Department of Dermatology, The Affiliated Hospital of The NCO School, The Army Medical University, Shijiazhuang, China
| | - Tingting Jin
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Chengrui Guo
- Center for Plastic and Reconstructive Surgery, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
4
|
Fahimnia F, Nemattalab M, Hesari Z. Development and characterization of a topical gel, containing lavender (Lavandula angustifolia) oil loaded solid lipid nanoparticles. BMC Complement Med Ther 2024; 24:155. [PMID: 38589838 PMCID: PMC11000301 DOI: 10.1186/s12906-024-04440-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024] Open
Abstract
Gels loaded with nanocarriers offer interesting ways to create novel therapeutic approaches by fusing the benefits of gel and nanotechnology. Clinical studies indicate that lavender oil (Lav-O) has a positive impact on accelerating wound healing properly based on its antimicrobial and anti-inflammatory effects. Initially Lav-O loaded Solid Lipid Nanoparticles (Lav-SLN) were prepared incorporating cholesterol and lecithin natural lipids and prepared SLNs were characterized. Next, a 3% SLN containing topical gel (Lav-SLN-G) was formulated using Carbopol 940. Both Lav-SLN and Lav-SLN-G were assessed in terms antibacterial effects against S. aureus. Lav-SLNs revealed a particle size of 19.24 nm, zeta potential of -21.6 mv and EE% of 75.46%. Formulated topical gel presented an acceptable pH and texture properties. Minimum Inhibitory/Bactericidal Concentration (MIC/MBC) against S. aureus for LAv-O, Lav-SLN and Lav-SLN-G were 0.12 and 0.24 mgml- 1, 0.05 and 0.19 mgml- 1 and 0.045, 0.09 mgml- 1, respectively. Therefore, SLN can be considered as an antimicrobial potentiating nano-carrier for delivery of Lav-O as an antimicrobial and anti-inflammatory agent in topical gel.
Collapse
Affiliation(s)
- Faeze Fahimnia
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Mehran Nemattalab
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Zahra Hesari
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
5
|
Semele R, Grewal S, Jeengar MK, Singh TG, Swami R. From Traditional Medicine to Advanced Therapeutics: The Renaissance of Phyto-nano Interventions in Psoriasis. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2024; 18:27-42. [PMID: 37921124 DOI: 10.2174/0127722708265612231012080047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 11/04/2023]
Abstract
Psoriasis is an autoimmune systemic chronic inflammatory disease that exhibits characteristic detrimental effects on the skin, often leading to infections or comorbid conditions. The multifaceted nature of psoriasis has made it very challenging to treat, especially with current chemotherapy options. Therefore, it is essential to consider phytoconstituents as novel alternatives. However, despite demonstrating higher anti-inflammatory, anti-psoriasis, and immunomodulatory potential, their clinical usage is hindered due to their poor physicochemical properties. To address these drawbacks, nanoparticulate drug delivery systems have been developed, helping to achieve better permeation of phytoconstituents through topical administration. This has breathed new life into traditional systems of medicine, particularly in the context of treating psoriasis. In this current review, we present a detailed, comprehensive, and up-to-date analysis of the literature, which will contribute to affirming the clinical role of phyto-nano interventions against psoriasis.
Collapse
Affiliation(s)
- Rajneesh Semele
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sonam Grewal
- Maharishi Markandeshwar College of Pharmacy, MMDU, Mullana, Haryana, India
| | - Manish Kumar Jeengar
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | | | - Rajan Swami
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
6
|
Amisha, Singh D, Kurmi BD, Singh A. Recent Advances in Nanocarrier-based Approaches to Atopic Dermatitis and Emerging Trends in Drug Development and Design. Curr Drug Deliv 2024; 21:932-960. [PMID: 37157192 DOI: 10.2174/1567201820666230508121716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/17/2023] [Indexed: 05/10/2023]
Abstract
Atopic dermatitis (AD), commonly known as Eczema, is a non-communicable skin condition that tends to become chronic. The deteriorating immunological abnormalities are marked by mild to severe erythema, severe itching, and recurrent eczematous lesions. Different pharmacological approaches are used to treat AD. The problem with commercial topical preparations lies in the limitation of skin atrophy, systemic side effects, and burning sensation that decreases patient compliance. The carrier-based system promises to eliminate these shortcomings; thus, a novel approach to treating AD is required. Liposomes, microemulsions, solid lipid nanoparticles (SLNs), nanoemulsions, etc., have been developed recently to address this ailment. Despite extensive research in the development method and various techniques, it has been challenging to demonstrate the commercial feasibility of these carrier- based systems, which illustrates a gap among the different research areas. Further, different soft wares and other tools have proliferated among biochemists as part of a cooperative approach to drug discovery. It is crucial in designing, developing, and analyzing processes in the pharmaceutical industry and is widely used to reduce costs, accelerate the development of biologically innovative active ingredients, and shorten the development time. This review sheds light on the compilation of extensive efforts to combat this disease, the product development processes, commercial products along with patents in this regard, numerous options for each step of computer-aided drug design, including in silico pharmacokinetics, pharmacodynamics, and toxicity screening or predictions that are important in finding the drug-like compounds.
Collapse
Affiliation(s)
- Amisha
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India
| | - Amrinder Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, India
| |
Collapse
|
7
|
Elbanna SA, Ebada HMK, Abdallah OY, Essawy MM, Abdelhamid HM, Barakat HS. Novel tetrahydrocurcumin integrated mucoadhesive nanocomposite κ-carrageenan/xanthan gum sponges: a strategy for effective local treatment of oral cancerous and precancerous lesions. Drug Deliv 2023; 30:2254530. [PMID: 37668361 PMCID: PMC10481765 DOI: 10.1080/10717544.2023.2254530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/27/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023] Open
Abstract
Oral cancer is one of the leading causes of death worldwide. Oral precancerous lesions (OPL) are the precursors of oral cancer, with varying degrees of progression. Tetrahydrocurcumin (THC) is a major metabolite of curcumin with superior anticancer properties against various types of cancer. However, THC's clinical outcome is limited by its poor aqueous solubility. Herein, we developed novel mucoadhesive biopolymer-based composite sponges for buccal delivery of THC, exploiting nanotechnology and mucoadhesion for efficient prevention and treatment of oral cancer. Firstly, THC-nanocrystals (THC-NC) were formulated and characterized for subsequent loading into mucoadhesive composite sponges. The anticancer activity of THC-NC was assessed on a human tongue squamous carcinoma cell line (SCC-4). Finally, the chemopreventive activity of THC-NC loaded sponges (THC-NC-S) was examined in DMBA-induced hamster OPL. The selected THC-NC exhibited a particle size of 532.68 ± 13.20 nm and a zeta potential of -46.08 ± 1.12 mV. Moreover, THC-NC enhanced the anticancer effect against SCC-4 with an IC50 value of 80 µg/mL. THC-NC-S exhibited good mucoadhesion properties (0.24 ± 0.02 N) with sustained drug release, where 90% of THC was released over 4 days. Furthermore, THC-NC-S had a magnificent potential for maintaining high chemopreventive activity, as demonstrated by significant regression in the dysplasia degree and a decline in cyclin D1 (control: 40.4 ± 12.5, THC-NC-S: 12.07 ± 5.2), culminating in significant amelioration after 25 days of treatment. Conclusively, novel THC-NC-S represent a promising platform for local therapy of OPL, preventing their malignant transformation into cancer.
Collapse
Affiliation(s)
- Shimaa A. Elbanna
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Heba M. K. Ebada
- Central Lab, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Ossama Y. Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Marwa M. Essawy
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hend M. Abdelhamid
- Department of Oral Pathology, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hebatallah S. Barakat
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Hussain A, Ramzan M, Altamimi MA, Khuroo T. HSPiP and QbD Program-Based Analytical Method Development and Validation to Quantify Ketoconazole in Dermatokinetic Study. AAPS PharmSciTech 2023; 24:231. [PMID: 37964178 DOI: 10.1208/s12249-023-02675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
Ketoconazole (KTZ) is the most potential azole anti-mycotic drug. The quantification of KTZ from various layers of the skin after topical application of lipidic nanocarriers is critical. We addressed a sensitive, specific, simple, rapid, reproducible, and economic analytical method to quantify KTZ from the treated skin homogenate using the Hansen solubility parameter (HSP, HSPiP software)-based modeling and experimental design. The software provided various HSP values for KTZ and solvents to compose the mobile phase. The Taguchi model identified the significant sets of factors to develop a robust bioanalytical method with reduced variability. In the optimization, acetonitrile (ACN) concentration (X1 as A) and the pH of mobile phase (X2 as B) were two factors against two responses (Y1: peak area and Y2: retention time). The HPLC (high-performance liquid chromatography) method validation was carried out based on US-FDA guidelines for the developed KTZ formulations (suspension, solid nanoparticles, and commercial product) extracted from the treated rat skin. The experimental solubility of KTZ was found to be maximum in the two solvents (ACN and ethyl acetate), based on HSP values. Surface response methodology (SRM) identified remarkable impact of ACN concentration and the mobile phase pH on the peak area and retention time. Analytical limits (0.17 and 0.50 µg/mL) were established for KTZ-SLNs (extracted from the skin). The method was implemented with high reproducibility, accuracy, and selectivity to quantify KTZ from the treated rat skin.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Mohhammad Ramzan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Jalandhar, 144411, Punjab, India.
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Tahir Khuroo
- Department of Pharmaceutics, Irma Lerma College of Pharmacy, Texas A & M University, College Station, Texas, USA
| |
Collapse
|
9
|
Kakkar V, Saini K, Singh KK. Challenges of current treatment and exploring the future prospects of nanoformulations for treatment of atopic dermatitis. Pharmacol Rep 2023; 75:1066-1095. [PMID: 37668937 PMCID: PMC10539427 DOI: 10.1007/s43440-023-00510-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 09/06/2023]
Abstract
Atopic dermatitis (AD) is a predominant and deteriorating chronic inflammation of the skin, categorized by a burning sensation and eczematous lesions in diverse portions of the body. The treatment of AD is exclusively focused to limit the itching, reduce inflammation, and repair the breached barrier of the skin. Several therapeutic agents for the treatment and management of AD have been reported and are in use in clinics. However, the topical treatment of AD has been an unswerving challenge for the medical fraternity owing to the impaired skin barrier function in this chronic skin condition. To surmount the problems of conventional drug delivery systems, numerous nanotechnology-based formulations are emerging as alternative new modalities for AD. Latter enhances the bioavailability and delivery to the target disease site, improves drug permeation and therapeutic efficacy with reduced systemic and off-target side effects, and thus improves patient health and promotes compliance. This review aims to describe the various pathophysiological events involved in the occurrence of AD, current challenges in treatment, evidence of molecular markers of AD and its management, combinatorial treatment options, and the intervention of nanotechnology-based formulations for AD therapeutics.
Collapse
Affiliation(s)
- Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| | - Komal Saini
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK.
- UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK.
- UCLan Research Centre for Translational Biosciences and Behaviour, University of Central Lancashire, Preston, PR1 2HE, Lancashire, UK.
| |
Collapse
|
10
|
Marques MP, Varela C, Mendonça L, Cabral C. Nanotechnology-Based Topical Delivery of Natural Products for the Management of Atopic Dermatitis. Pharmaceutics 2023; 15:1724. [PMID: 37376172 DOI: 10.3390/pharmaceutics15061724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Atopic dermatitis (AD) is a chronic eczematous inflammatory disease that may arise from environmental, genetic, and immunological factors. Despite the efficacy of current treatment options such as corticosteroids, such approaches are mainly focused on symptom relief and may present certain undesirable side effects. In recent years, isolated natural compounds, oils, mixtures, and/or extracts have gained scientific attention because of their high efficiency and moderate to low toxicity. Despite their promising therapeutic effects, the applicability of such natural healthcare solutions is somewhat limited by their instability, poor solubility, and low bioavailability. Therefore, novel nanoformulation-based systems have been designed to overcome these limitations, thus enhancing the therapeutic potential, by promoting the capacity of these natural drugs to properly exert their action in AD-like skin lesions. To the best of our knowledge, this is the first literature review that has focused on summarizing recent nanoformulation-based solutions loaded with natural ingredients, specifically for the management of AD. We suggest that future studies should focus on robust clinical trials that may confirm the safety and effectiveness of such natural-based nanosystems, thus paving the way for more reliable AD treatments.
Collapse
Affiliation(s)
- Mário Pedro Marques
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Carla Varela
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products (CIEPQPF), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Laura Mendonça
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Célia Cabral
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
11
|
Zhu L, Xue Y, Feng J, Wang Y, Lu Y, Chen X. Tetrahydrocurcumin as a stable and highly active curcumin derivative: A review of synthesis, bioconversion, detection and application. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
12
|
Wang Y, Yue Y, Jia R, Liu X, Cheng Z, Cheng Y, Xu Y, Xie Z, Xia H. Design and Evaluation of Paeonol-Loaded Liposomes in Thermoreversible Gels for Atopic Dermatitis. Gels 2023; 9:gels9030198. [PMID: 36975647 PMCID: PMC10047988 DOI: 10.3390/gels9030198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023] Open
Abstract
Paeonol (PAE) is a hydrophobic drug. In this study, we encapsulated paeonol in a lipid bilayer of liposomes (PAE-L), which delayed drug release and increased drug solubility. When PAE-L was dispersed in gels (PAE-L-G) based on a poloxamer matrix material for local transdermal delivery, we observed amphiphilicity, reversible thermal responsiveness, and micellar self-assembly behavior. These gels can be used for atopic dermatitis (AD), an inflammatory skin disease, to change the surface temperature of the skin. In this study, we prepared PAE-L-G at an appropriate temperature for the treatment of AD. We then assessed the gel’s relevant physicochemical properties, in vitro cumulative drug release, and antioxidant properties. We found that PAE-loaded liposomes could be designed to increase the drug effect of thermoreversible gels. At 32 °C, PAE-L-G could change from solution state to gelatinous state at 31.70 ± 0.42 s, while the viscosity was 136.98 ± 0.78 MPa.S and the free radical scavenging rates on DPPH and H2O2 were 92.24 ± 5.57% and 92.12 ± 2.71%, respectively. Drug release across the extracorporeal dialysis membrane reached 41.76 ± 3.78%. In AD-like mice, PAE-L-G could also relieve skin damage by the 12th day. In summary, PAE-L-G could play an antioxidant role and relieve inflammation caused by oxidative stress in AD.
Collapse
Affiliation(s)
- Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ruoyang Jia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xinyi Liu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhiqing Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei 230031, China
- School of Life Science, University of Science and Technology of China, Hefei 230027, China
- Correspondence: (Y.C.); (H.X.); Tel./Fax: +86-13965033210 (H.X.)
| | - Yinxiang Xu
- Zhaoke (Hefei) Pharmaceutical Co., Ltd., Hefei 230088, China
| | - Zili Xie
- Anhui Institute for Food and Drug Control, Hefei 230051, China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Correspondence: (Y.C.); (H.X.); Tel./Fax: +86-13965033210 (H.X.)
| |
Collapse
|
13
|
Kawasaki R, Kawamura S, Kodama T, Yamana K, Maeda A, Yimiti D, Miyaki S, Hino S, Ozawa N, Nishimura T, Kawamoto S, Ikeda A. Development of a Water-Dispersible Supramolecular Complex of Polyphenol with Polypeptides for Attenuation of the Allergic Response using a Mechanochemical Strategy. Macromol Biosci 2023; 23:e2200462. [PMID: 36640295 DOI: 10.1002/mabi.202200462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Indexed: 01/15/2023]
Abstract
The prevalence of allergic disorders has increased worldwide in recent decades. Polyphenols, including resveratrol and curcumin, are posited to have potential as therapeutic agents for allergy; however, their use has been limited by poor water solubility. Accordingly, a highly concentrated, water dispersible, supramolecular complexes of polyphenols with polypeptides (poly-L-lysine, poly-γ-glutamic acid) and gelatin using high-speed vibration milling are developed. The complex exhibited resistance to photobleaching and thermal radiation. Treatment of a rat basophilic leukemia cell line (RBL-2H3) with polypeptide complexes containing resveratrol is suppressed allergic responses in vitro. Moreover, aerosolized administration of polypeptide complexes is demonstrated excellent bioavailability and inhibition of immediate hypersensitivity reactions in ear tissue in vivo. Furthermore, the method avoids the use of organic solvent and therefore reduces undesirable biological responses.
Collapse
Affiliation(s)
- Riku Kawasaki
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Shogo Kawamura
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Tomoki Kodama
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Keita Yamana
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| | - Akira Maeda
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Dilimulati Yimiti
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
| | - Shigeru Miyaki
- Department of Orthopaedic Surgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan.,Medical Center for Translational and Clinical Research, Hiroshima University Hospital, 1-2-3 Kasumi Minami-ku, Hiroshima, 734-8551, Japan
| | - Shodai Hino
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, AIST), 1-8-31 Midorigaoka, Ikeda, Japan
| | - Naoki Ozawa
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, Ueda, 386-8567, Japan
| | - Seiji Kawamoto
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan.,Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8530, Japan
| | - Atsushi Ikeda
- Program of Applied Chemistry, Graduate School of Advanced Science and Engineering, 1-4-1 Kagamiyama, Higashi-Hiroshima, 739-8527, Japan
| |
Collapse
|
14
|
Saini K, Arora C, Saini M, Sharma S, Chitkara D, Kakkar V. Preclinical safety of tetrahydrocurcumin loaded lipidic nanoparticles incorporated into tacrolimus ointment: In vitro and in vivo evaluation. Food Chem Toxicol 2022; 167:113260. [PMID: 35777714 DOI: 10.1016/j.fct.2022.113260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 01/19/2023]
Abstract
Preclinical safety and proof of concept studies for a topical ointment comprising of concentrated tetrahydrocurcumin loaded lipidic nanoparticles (THC-LNs) and tacrolimus ointment (TTO) is proposed in the present investigation. The skin irritation potential and acute dermal toxicity were performed in rats in compliance with the Organization for Economic Cooperation and Development (OECD) guidelines (402, 404 and 410) while the cytotoxic potential was performed in HaCaT cells. Finally, in vivo evaluation was performed in Imiquimod mice model of psoriasis. In primary skin irritation assessment, TTO formulation, marketed formulation (Tacroz® Forte), THC-LNs, and blank LNs were topically applied on intact skin sites in rats while another group served as a negative control group for 72 h. TTO did not induce any adverse reactions. Repeated 28 days dermal toxicity followed by biochemical and histopathological assessment showed negligible alternations and skin lesions. THC-LNs revealed negligible cytotoxic potential in HaCaT cells. TTO showed significantly high anti-psoriatic activity in comparison to marketed ointment. This was also confirmed via histopathological evaluation. Based on these findings, it can be ascertained that TTO showed minimal toxicity and has ample potential for further clinical analysis. The above studies affirm the potential of TTO as an alternative for psoriasis.
Collapse
Affiliation(s)
- Komal Saini
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Caamin Arora
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Megha Saini
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Saurabh Sharma
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, 333031, Rajasthan, India
| | - Deepak Chitkara
- Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Vidya Vihar, 333031, Rajasthan, India
| | - Vandita Kakkar
- Department of Pharmaceutics, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
15
|
Explore the Multitarget Mechanism of Tetrahydrocurcumin preventing on UV-Induced Photoaging mouse skin. Heliyon 2022; 8:e09888. [PMID: 35965981 PMCID: PMC9363970 DOI: 10.1016/j.heliyon.2022.e09888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/10/2022] [Accepted: 07/01/2022] [Indexed: 11/26/2022] Open
Abstract
UV induced photoaging is the main external factor of skin aging. In this study, we tested the protective effects of tetrahydrocurcumin on UV-induced skin photoaging of KM mice and researched the multi-target mechanism through RNA sequencing technology. Mouse experiments show that tetrahydrocurcumin strongly changed in skin appearance, epidermal thickness, and wrinkle-related parameters in UV-irradiated mice. RNA-seq result show that we found 29 differentially expressed mRNA transcripts in UV mice relative to Ctrl rats (18 up-regulated and 11 down-regulated) and 7 significantly dysregulated mRNAs were obtained in the THC group compared to the UV group (1 up-regulated and 6 down-regulated), respectively. Spink7, Edn3, Stab2 may be the key target genes of tetrahydrocurcumin in preventing aging. Bioinformatics analysis shows that the response to muscle contraction and melanin biosynthetic GO term and Inflammation related pathway such as PPAR, MAPK would involve in effects of tetrahydrocurcumin. The results of this study indicated that tetrahydrocurcumin can improve the appearance through anti-inflammatory, improving extracellular matrix and inhibiting melanin production. It could be suggested as a protective measure in the prevention of UV-induced photoaging.
Collapse
|
16
|
Saini K, Verma S, Kakkar V. Anti-psoriatic effects of tetrahydrocurcumin lipidic nanoparticles in IMQ induced psoriatic plaque: A research report. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|