1
|
Slimani Y, Khan A, Nawaz M, Hossain MK, Thakur A. Efficient rhodamine B dye photocatalytic degradation in aqueous media using novel ZnO nanomaterials co-doped with Ce and Dy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124725. [PMID: 38955072 DOI: 10.1016/j.saa.2024.124725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Water pollution caused by dyes and industrial wastewater poses a significant threat to ecosystems. The purification of such pollutants presents a major challenge. Photocatalysis based on semiconductor materials is a potential wastewater treatment process due to its safety and cost-effectiveness. In the present work, Zn1-2xCexDyxO (x = 0.01-0.05) semiconductors were prepared by the sol-gel auto-ignition method. The samples are denoted CDZO1, CDZO3, and CDZO5 for x = 0.01-0.05, respectively. The X-ray diffraction and Raman spectroscopy results revealed the formation of ZnO hexagonal phase wurtzite structure for all synthesized compositions. Different structural properties were determined. It was found that the lattice parameters and the unit cell volume increased, while the crystallite size diminished as x varied from 0.01 to 0.05. Transmission electron microscopy observations confirmed the formation of nanoparticles with the desired chemical compositions. The specific surface area (SSA) values are found to be 39.95 m2/g, 48.62 m2/g, and 51.36 m2/g for CDZO1, CDZO5, and CDZO5 samples, respectively. The reflectance spectra were recorded to examine the optical properties of the different nanoparticles. The values of the optical band gap were 3.221, 3.225, and 3.239 eV for CDZO1, CDZO3, and CDZO5 samples, respectively. In addition, the photocatalytic performance towards RhB dye degradation for the different samples was assessed. It was established that the CDZO3 sample with a moderate SSA value exhibited the superior photocatalytic performance among the other as-prepared samples wherein the percentage of degradation efficiency, and kinetic constant rate attained their maximum values of 98.22 % and 0.0521 min-1, respectively within 75 min. As per the obtained findings, it is evident that the Zn1-2xCexDyxO photocatalyst has prominent potential for use in the degradation of dyes and offers a useful route for impeding the recombination of electron-hole pairs of zinc oxide material.
Collapse
Affiliation(s)
- Yassine Slimani
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia.
| | - Abuzar Khan
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management, King Fahd University of Petroleum & Minerals, Box 5040, Dhahran 31261, Saudi Arabia
| | - Muhammad Nawaz
- Department of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammad Kamal Hossain
- Interdisciplinary Research Center for Sustainable Energy Systems, King Fahd University of Petroleum & Minerals, Box 5040, Dhahran 31261, Saudi Arabia
| | - Atul Thakur
- Centre for Nanotechnology, Amity University Haryana, Gurugram 122413, India
| |
Collapse
|
2
|
Luo Z, Rong P, Yang Z, Zhang J, Zou X, Yu Q. Preparation and Application of Co-Doped Zinc Oxide: A Review. Molecules 2024; 29:3373. [PMID: 39064951 PMCID: PMC11279694 DOI: 10.3390/molecules29143373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Due to a wide band gap and large exciton binding energy, zinc oxide (ZnO) is currently receiving much attention in various areas, and can be prepared in various forms including nanorods, nanowires, nanoflowers, and so on. The reliability of ZnO produced by a single dopant is unstable, which in turn promotes the development of co-doping techniques. Co-doping is a very promising technique to effectively modulate the optical, electrical, magnetic, and photocatalytic properties of ZnO, as well as the ability to form various structures. In this paper, the important advances in co-doped ZnO nanomaterials are summarized, as well as the preparation of co-doped ZnO nanomaterials by using different methods, including hydrothermal, solvothermal, sol-gel, and acoustic chemistry. In addition, the wide range of applications of co-doped ZnO nanomaterials in photocatalysis, solar cells, gas sensors, and biomedicine are discussed. Finally, the challenges and future prospects in the field of co-doped ZnO nanomaterials are also elucidated.
Collapse
Affiliation(s)
| | | | | | | | | | - Qi Yu
- Shaanxi Laboratory of Catalysis, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Z.L.); (P.R.); (Z.Y.); (J.Z.); (X.Z.)
| |
Collapse
|
3
|
Gantumur M, Hossain MI, Shahiduzzaman M, Tamang A, Rafij JH, Shahinuzzaman M, Thi Cam Tu H, Nakano M, Karakawa M, Ohdaira K, AlMohamadi H, Ibrahim MA, Sopian K, Akhtaruzzaman M, Nunzi JM, Taima T. Tungsten-Doped ZnO as an Electron Transport Layer for Perovskite Solar Cells: Enhancing Efficiency and Stability. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36255-36271. [PMID: 38959094 DOI: 10.1021/acsami.4c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
This study delves into enhancing the efficiency and stability of perovskite solar cells (PSCs) by optimizing the surface morphologies and optoelectronic properties of the electron transport layer (ETL) using tungsten (W) doping in zinc oxide (ZnO). Through a unique green synthesis process and spin-coating technique, W-doped ZnO films were prepared, exhibiting improved electrical conductivity and reduced interface defects between the ETL and perovskite layers, thus facilitating efficient electron transfer at the interface. High-quality PSCs with superior ETL demonstrated a substantial 30% increase in power conversion efficiency (PCE) compared to those employing pristine ZnO ETL. These solar cells retained over 70% of their initial PCE after 4000 h of moisture exposure, surpassing reference PSCs by 50% PCE over this period. Advanced numerical multiphysics solvers, employing finite-difference time-domain (FDTD) and finite element method (FEM) techniques, were utilized to elucidate the underlying optoelectrical characteristics of the PSCs, with simulated results corroborating experimental findings. The study concludes with a thorough discussion on charge transport and recombination mechanisms, providing insights into the enhanced performance and stability achieved through W-doped ZnO ETL optimization.
Collapse
Affiliation(s)
- Munkhtuul Gantumur
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa 920-1292, Japan
| | - Mohammad Ismail Hossain
- Department of Electrical and Computer Engineering, University of California, Davis, California 95616, United States
- Research and Development, Meta Materials Inc. (META), Pleasanton, California 94588, United States
| | - Md Shahiduzzaman
- Nanomaterials Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Asman Tamang
- Research and Development, Meta Materials Inc. (META), Pleasanton, California 94588, United States
| | - Junayed Hossain Rafij
- Department of Electrical and Electronics Engineering, Universiti Tenaga Nasional(@The Energy University), Kajang, Selangor 43000, Malaysia
| | - Md Shahinuzzaman
- Institute of Energy Research and Development, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Huynh Thi Cam Tu
- Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Nakano
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Makoto Karakawa
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa 920-1292, Japan
- Nanomaterials Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| | - Keisuke Ohdaira
- Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1292, Japan
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Sustainable Research Center, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Mohd Adib Ibrahim
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Kamaruzzaman Sopian
- Department of Mechanical Engineering, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia
| | - Md Akhtaruzzaman
- Sustainable Research Center, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- The Department of Chemistry, Faculty of Science, The Islamic University of Madinah, Madinah, Abo Bakr Al Siddiq, Al Jamiah, Madinah 42351, Saudi Arabia
| | - Jean Michel Nunzi
- Nanomaterials Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
- Department of Physics, Engineering Physics and Astronomy, Queens University, Kingston K7L 3N6, Ontario, Canada
| | - Tetsuya Taima
- Graduate School of Frontier Science Initiative, Kanazawa University, Kakuma, Kanazawa 920-1292, Japan
- Nanomaterials Research Institute, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan
| |
Collapse
|
4
|
Ullah A, Iftikhar Khan M, Ihtisham-ul-haq, Almutairi BS, N. AlResheedi DB, Choi JR. Bandgap Engineering and Enhancing Optoelectronic Performance of a Lead-Free Double Perovskite Cs 2AgBiBr 6 Solar Cell via Al Doping. ACS OMEGA 2024; 9:18202-18211. [PMID: 38680326 PMCID: PMC11044255 DOI: 10.1021/acsomega.3c10388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 05/01/2024]
Abstract
In this study, solar cells based on pure Cs2AgBiBr6 and Al-doped metal were fabricated using the sol-gel spin-coating technique. X-ray diffraction (XRD) analysis confirmed the formation of cubic-structured films for both pure and Al-doped. Notably, the grain size of Al-doped Cs2AgBiBr6 was observed to be larger than that of its pure counterpart. The optical properties of these films were investigated using UV-vis spectroscopy, revealing essential parameters such as the bandgap energy (Eg), refractive index (n), extinction coefficients (k), and dielectric constant. While the pure film exhibited an Eg of 1.91 eV, the Al-doped film demonstrated a slightly lower Eg of 1.82 eV. Utilization of these films in solar cell fabrication yielded intriguing results. The J-V curve shows that the pure solar cell displayed a short-circuit current density (Jsc) of 5.01 mA/cm2, a fill factor (FF) of 0.67, an open-circuit voltage (Voc) of 0.89 V, and an efficiency of 3.02%. Al doping led to improvements, with an increase in Voc to 0.91 V, FF to 0.71, and Jsc to 5.29 mA/cm2. Consequently, the overall efficiency surged to 3.40%, marking a substantial 12.5% enhancement compared with the pure solar cell. These findings underscore the efficacy of Al doping in enhancing the performance of Cs2AgBiBr6-based solar cells.
Collapse
Affiliation(s)
- Asad Ullah
- Department
of Physics, The University of Lahore, Lahore 53700, Pakistan
| | | | - Ihtisham-ul-haq
- Department
of Physics, The University of Lahore, Lahore 53700, Pakistan
| | - Badriah S. Almutairi
- Department
of Physics, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Jeong Ryeol Choi
- School
of Electronic Engineering, Kyonggi University, Suwon, Gyeonggi-do 16227, Republic
of Korea
| |
Collapse
|
5
|
Khan MI, Hussain S, Almutairi BS, Dahshan A, Mujtaba A, Ahmad SM. The structural, optical and photovoltaic properties of Zn-doped MAPbI 2Br perovskite solar cells. Phys Chem Chem Phys 2024; 26:12210-12218. [PMID: 38592224 DOI: 10.1039/d3cp06299f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
The spin coating method was used to deposit MAPbI2Br films on FTO-glass substrates. Zn2+ (zinc) doping was used for these films at intensity rates of 2% and 4%, respectively. XRD analysis proved that MAPbI2Br films had a cubic structure and a crystalline character. 2% Zn doping into the MAPbI2Br film had a modest large grain size (38.09 nm), Eg (1.95 eV), high refractive index (2.66), and low extinction coefficient (1.67), according to XRD and UV-vis analyses. To facilitate and enhance carrier transit, at contacts as well as throughout the bulk material, the perovskite's trap-state densities decreased. The predicted MAPbI2Br valence and conduction band edges are -5.44 and -3.52, respectively. The conduction band (CB) edge of the film that was exposed to Zn atoms has been pressed towards the lower value, assembly it a better material for solar cells. EIS is particularly useful for understanding charge carrier transport, recombination mechanisms, and the influence of different interfaces within the device structure. Jsc is 11.09 mA cm-2, Voc is 1.09, PCE is 9.372% and FF is 0.777. The cell made with the 2% Zn doped into the MAPbI2Br film demonstrated a superior device.
Collapse
Affiliation(s)
- M I Khan
- Department of Physics, The University of Lahore, 53700, Pakistan.
| | - Saddam Hussain
- Facultad de Ingeniería Mochis, Universidad Autónoma de Sinaloa, Los Mochis C.P. 81223, Mexico.
| | - Badriah S Almutairi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - A Dahshan
- Department of Physics, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Ali Mujtaba
- Department of Physics, The University of Lahore, 53700, Pakistan.
| | | |
Collapse
|
6
|
Ihtisham-Ul-Haq, Khan MI, Ullah A, Mujtaba A, Almutairi BS, Shahid W, Ali A, Choi JR. Bandgap reduction and efficiency enhancement in Cs 2AgBiBr 6 double perovskite solar cells through gallium substitution. RSC Adv 2024; 14:5440-5448. [PMID: 38348293 PMCID: PMC10859843 DOI: 10.1039/d3ra08965g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Lead-free halide double perovskite (LFHDP) Cs2AgBiBr6 has emerged as a promising alternative to traditional lead-based perovskites (LBPs), offering notable advantages in terms of chemical stability and non-toxicity. However, the efficiency of Cs2AgBiBr6 solar cells faces challenges due to their wide bandgap (Eg). As a viable strategy to settle this problem, we consider optimization of the optical and photovoltaic properties of Cs2AgBiBr6 by Gallium (Ga) substitution. The synthesized Cs2Ag0.95Ga0.05BiBr6 is rigorously characterized by means of X-ray diffraction (XRD), UV-vis spectroscopy, and solar simulator measurements. XRD analysis reveals shifts in peak positions, indicating changes in the crystal lattice due to Ga substitution. The optical analysis demonstrates a reduction in the Eg, leading to improvement of the light absorption within the visible spectrum. Importantly, the Cs2Ag0.95Ga0.05BiBr6 solar cell exhibits enhanced performance, as evidenced by higher values of open circuit voltage (Voc), short-circuit current (Jsc), and fill factor (FF), which are 0.94 V, 6.01 mA cm-2, and 0.80, respectively: this results in an increased power conversion efficiency (PCE) from 3.51% to 4.52%. This research not only helps to overcome film formation challenges, but also enables stable Cs2Ag0.95Ga0.05BiBr6 to be established as a high-performance material for photovoltaic applications. Overall, our development contributes to the advancement of environmentally friendly solar technologies.
Collapse
Affiliation(s)
- Ihtisham-Ul-Haq
- Department of Physics, The University of Lahore 53700 Pakistan
| | - M I Khan
- Department of Physics, The University of Lahore 53700 Pakistan
| | - Asad Ullah
- Department of Physics, The University of Lahore 53700 Pakistan
| | - Ali Mujtaba
- Department of Physics, The University of Lahore 53700 Pakistan
| | - Badriah S Almutairi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University P.O.Box 84428 Riyadh 11671 Saudi Arabia
| | - Wajeehah Shahid
- Department of Physics, The University of Lahore 53700 Pakistan
| | - Asghar Ali
- Department of Physics, The University of Lahore 53700 Pakistan
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University Suwon Gyeonggi-do 16227 Republic of Korea
| |
Collapse
|
7
|
Kanwal S, Khan M, Uzair M, Fatima M, Ammar M, Saman Z, Elsaeedy H, Urram Shahzad M, Mufarreh Elqahtani Z, Alwadai N. A facile green approach to the synthesis of Bi2WO6@V2O5 heterostructure and their photocatalytic activity evaluation under visible light irradiation for RhB dye removal. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
|
8
|
Chundawat P, Vyas Y, Dharmendra D, Chaubisa P, Ameta C. Novel synergistic Combination of W and Co Co‐doped ZnO Nanoparticles Incorporated as a Photoanode in a Dye Sensitized Solar Cell. ChemistrySelect 2022. [DOI: 10.1002/slct.202202830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Priyanka Chundawat
- Photochemistry Laboratory Department of Chemistry University College of Science M.L. Sukhadia University Udaipur 313001 (Raj. INDIA
| | - Yogeshwari Vyas
- Photochemistry Laboratory Department of Chemistry University College of Science M.L. Sukhadia University Udaipur 313001 (Raj. INDIA
| | - Dharmendra Dharmendra
- Photochemistry Laboratory Department of Chemistry University College of Science M.L. Sukhadia University Udaipur 313001 (Raj. INDIA
| | - Purnima Chaubisa
- Photochemistry Laboratory Department of Chemistry University College of Science M.L. Sukhadia University Udaipur 313001 (Raj. INDIA
| | - Chetna Ameta
- Photochemistry Laboratory Department of Chemistry University College of Science M.L. Sukhadia University Udaipur 313001 (Raj. INDIA
| |
Collapse
|
9
|
Rathnasekara R, Hari P. Enhancing the Efficiency of Dye‐Sensitized Solar Cells (DSSCs) by Nanostructured Ag‐doped ZnO Electrodes. ChemistrySelect 2022. [DOI: 10.1002/slct.202200830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Rusiri Rathnasekara
- Department of Physics and Engineering Physics University of Tulsa Tulsa Oklahoma 74104 USA
| | - Parameswar Hari
- Department of Physics and Engineering Physics University of Tulsa Tulsa Oklahoma 74104 USA
- Oklahoma Photovoltaic Research Institute University of Tulsa Tulsa Oklahoma 74104 USA
| |
Collapse
|
10
|
Hamdi S, Smaoui H, Guermazi S, Leroy G, Duponchel B. Enhancing the structural, optical and electrical conductivity properties of ZnO nanopowders through Dy doping. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
The Effect of 600 keV Ag Ion Irradiation on the Structural, Optical, and Photovoltaic Properties of MAPbBr3 Films for Perovksite Solar Cell Applications. MATERIALS 2022; 15:ma15155299. [PMID: 35955235 PMCID: PMC9370059 DOI: 10.3390/ma15155299] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/21/2022]
Abstract
A competitive new technology, organic metallic halide perovskite solar cells feature a wide working area, low manufacturing costs, a long lifespan, and a significant amount of large efficacy of power conversion (PCE). The spin-coating technique was utilized for the fabrication of pure CH3NH3PbBr3 (MAPbBr3) thin films, and these films are implanted with 600 keV silver (Ag) ions at fluency rate of 6 × 1014 and 4 × 1014 ions/cm2. XRD analysis confirmed the cubic structure of MAPbBr3. A high grain size was observed at the fluency rate of 4 × 1014 ions/cm2. The UV-Vis spectroscopic technique was used to calculate the optical properties such as the bandgap energy (Eg), refractive index (n), extinction coefficients (k), and dielectric constant. A direct Eg of 2.44 eV was measured for the pristine film sample, whereas 2.32 and 2.36 eV were measured for Ag ion-implanted films with a 4 × 1014 and 6 × 1014 ions/cm2 fluence rate, respectively. The solar cells of these films were fabricated. The Jsc was 6.69 mA/cm2, FF was 0.80, Voc was 1.1 V, and the efficiency was 5.87% for the pristine MAPbBr3-based cell. All of these parameters were improved by Ag ion implantation. The maximum values were observed at a fluency rate of 4 × 1014 ions/cm2, where the Voc was 1.13 V, FF was 0.75, Jsc was 8.18 mA/cm2, and the efficiency was 7.01%.
Collapse
|
12
|
Transfer-Printed Cuprous Iodide (CuI) Hole Transporting Layer for Low Temperature Processed Perovskite Solar Cells. NANOMATERIALS 2022; 12:nano12091467. [PMID: 35564176 PMCID: PMC9101613 DOI: 10.3390/nano12091467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 01/10/2023]
Abstract
Perovskite solar cells (PSCs) have achieved significantly high power-conversion efficiency within a short time. Most of the devices, including those with the highest efficiency, are based on a n–i–p structure utilizing a (doped) spiro-OMeTAD hole transport layer (HTL), which is an expensive material. Furthermore, doping has its own challenges affecting the processing and performance of the devices. Therefore, the need for low-cost, dopant-free hole transport materials is an urgent and critical issue for the commercialization of PSCs. In this study, n–i–p structure PSCs were fabricated in an ambient environment with cuprous iodide (CuI) HTL, employing a novel transfer-printing technique, in order to avoid the harmful interaction between the perovskite surface and the solvents of CuI. Moreover, in fabricated PSCs, the SnO2 electron transport layer (ETL) has been incorporated to reduce the processing temperature, as previously reported (n–i–p) devices with CuI HTL are based on TiO2, which is a high-temperature processed ETL. PSCs fabricated at 80 °C transfer-printing temperature with 20 nm iodized copper, under 1 sun illumination showed a promising efficiency of 8.3%, (JSC and FF; 19.3 A/cm2 and 53.8%), which is comparable with undoped spiro-OMeTAD PSCs and is the highest among the ambient-environment-fabricated PSCs utilizing CuI HTL.
Collapse
|