1
|
Wang L, Xu X, Chu L, Meng C, Xu L, Wang Y, Jiao Q, Huang T, Zhao Y, Liu X, Li J, Zhou B, Wang T. PEG-modified carbon-based nanoparticles as tumor-targeted drug delivery system reducing doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2023; 168:115836. [PMID: 37925938 DOI: 10.1016/j.biopha.2023.115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023] Open
Abstract
Herein, a doxorubicin-loaded carbon-based drug delivery system, denoted as PC-DOX, composed of pH-responsive imine bond was developed for the tumor-targeted treatment. PC-DOX with a uniform particle size around 180 nm was synthesized by coating of as-synthesized hollow carbon-based nanoparticles (NPs) with dialdehyde PEG, which was used as carrier to attach DOX covalently through dynamic covalent bond. The unique structure endowed the advantages of specific tumor targeting and tumor microenvironment (TME) specific drug delivery capacity with PC-DOX. For the one hand, the tumor targeting caused by the enhanced permeability and retention (EPR) effect could significantly improve the tumor cellular uptake. For the other hand, the pH-responsiveness could realize the effective DOX accumulation in tumor tissues, avoiding the unwanted side effect to the normal tissues. As a result, PC-DOX with high DOX loading capacity (70.12%) and excellent biocompatibility, concurrently, presented a significant anti-tumor effect at a low mass concentration (DOX equivalent dose: 20 μg/mL). Another attractive characteristic of PC-DOX was the remarkable protective effect towards DOX-induced cardiotoxicity, which could be clearly observed from in vitro cellular, and animal assays. Compared with free DOX, the cardiomyocyte viability increased by average 30.58%, and the heart function was also significantly improved. This novel drug delivery nanoplatform provides a new method for the future clinical application of DOX in the cancer's therapeutics.
Collapse
Affiliation(s)
- Lide Wang
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China; School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Xiufeng Xu
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Lichao Chu
- The First Affiliated Hospital of Weifang Medical University (Weifang People's Hospital), Weifang Medical University, Weifang, 261044, Shandong, PR China; School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Chun Meng
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Longwu Xu
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China; School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Yuying Wang
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China; School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Qiuhong Jiao
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Tao Huang
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Yudan Zhao
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Xiaohong Liu
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Jingtian Li
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, Weifang, 261053 Shandong, PR China.
| | - Tao Wang
- Affiliated Hospital of Weifang Medical University, Weifang Medical University, Weifang, 261053 Shandong, PR China.
| |
Collapse
|
2
|
Das TK, Jesionek M, Çelik Y, Poater A. Catalytic polymer nanocomposites for environmental remediation of wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165772. [PMID: 37517738 DOI: 10.1016/j.scitotenv.2023.165772] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/15/2023] [Accepted: 07/23/2023] [Indexed: 08/01/2023]
Abstract
The removal of harmful chemicals and species from water, soil, and air is a major challenge in environmental remediation, and a wide range of materials have been studied in this regard. To identify the optimal material for particular applications, research is still ongoing. Polymer nanocomposites (PNCs), which combine the benefits of nanoparticles with polymers, an alternative to conventional materials, may open up new possibilities to overcome this difficulty. They have remarkable mechanical capabilities and compatibility due to their polymer matrix with a very high surface area to volume ratio brought about by their special physical and chemical properties, and the extremely reactive surfaces of the nanofillers. Composites also provide a viable answer to the separation and reuse problems that hinder nanoparticles in routine use. Understanding these PNCs materials in depth and using them in practical environmental applications is still in the early stages of development. The review article demonstrates a crisp introduction to the PNCs with their advantageous properties as a catalyst in environmental remediation. It also provides a comprehensive explanation of the design procedure and synthesis methods for fabricating PNCs and examines in depth the design methods, principles, and design techniques that guide proper design. Current developments in the use of polymer nanocomposites for the pollutant treatment using three commonly used catalytic processes (catalytic and redox degradation, electrocatalytic degradation, and biocatalytic degradation) are demonstrated in detail. Additionally, significant advances in research on the aforementioned catalytic process and the mechanism by which contaminants are degraded are also amply illustrated. Finally, there is a summary of the research challenges and future prospects of catalytic PNCs in environmental remediation.
Collapse
Affiliation(s)
- Tushar Kanti Das
- Institute of Physics - Center for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland.
| | - Marcin Jesionek
- Institute of Physics - Center for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland
| | - Yasemin Çelik
- Department of Materials Science and Engineering, Eskişehir Technical University, 26555 Eskişehir, Turkey
| | - Albert Poater
- Institute of Computational Chemistry and Catalysis, Department of Chemistry, University of Girona, c/Maria Aurèlia Capmany 69, 17003 Girona, Spain.
| |
Collapse
|
4
|
Sagadevan S, Alshahateet SF, Anita Lett J, Fatimah I, Poonchi Sivasankaran R, Kassegn Sibhatu A, Leonardg E, Le MV, Soga T. Highly efficient photocatalytic degradation of methylene blue dye over Ag2O nanoparticles under solar light irradiation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Manchwari S, Khatter J, Chauhan R. Enhanced photocatalytic efficiency of TiO2/CdS nanocomposites by manipulating CdS suspension on TiO2 nanoparticles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
6
|
Stejskal J. Recent Advances in the Removal of Organic Dyes from Aqueous Media with Conducting Polymers, Polyaniline and Polypyrrole, and Their Composites. Polymers (Basel) 2022; 14:4243. [PMID: 36236189 PMCID: PMC9573281 DOI: 10.3390/polym14194243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/07/2022] Open
Abstract
Water pollution by organic dyes, and its remediation, is an important environmental issue associated with ever-increasing scientific interest. Conducting polymers have recently come to the forefront as advanced agents for removing dye. The present review reports on the progress represented by the literature published in 2020-2022 on the application of conducting polymers and their composites in the removal of dyes from aqueous media. Two composites, incorporating the most important polymers, polyaniline, and polypyrrole, have been used as efficient dye adsorbents or photocatalysts of dye decomposition. The recent application trends are outlined, and future uses also exploiting the electrical and electrochemical properties of conducting polymers are offered.
Collapse
Affiliation(s)
- Jaroslav Stejskal
- University Institute, Tomas Bata University in Zlin, 760 01 Zlin, Czech Republic
| |
Collapse
|
7
|
Koteeswari P, Sagadevan S, Fatimah I, Kassegn Sibhatu A, Izwan Abd Razak S, Leonard E, Soga T. Green synthesis and characterization of copper oxide nanoparticles and their photocatalytic activity. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Current Developments in the Effective Removal of Environmental Pollutants through Photocatalytic Degradation Using Nanomaterials. Catalysts 2022. [DOI: 10.3390/catal12050544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photocatalysis plays a prominent role in the protection of the environment from recalcitrant pollutants by reducing hazardous wastes. Among the different methods of choice, photocatalysis mediated through nanomaterials is the most widely used and economical method for removing pollutants from wastewater. Recently, worldwide researchers focused their research on eco-friendly and sustainable environmental aspects. Wastewater contamination is one of the major threats coming from industrial processes, compared to other environmental issues. Much research is concerned with the advanced development of technology for treating wastewater discharged from various industries. Water treatment using photocatalysis is prominent because of its degradation capacity to convert pollutants into non-toxic biodegradable products. Photocatalysts are cheap, and are now emerging slowly in the research field. This review paper elaborates in detail on the metal oxides used as a nano photocatalysts in the various type of pollutant degradation. The progress of research into metal oxide nanoparticles, and their application as photocatalysts in organic pollutant degradation, were highlighted. As a final consideration, the challenges and future perspectives of photocatalysts were analyzed. The application of nano-based materials can be a new horizon in the use of photocatalysts in the near future for organic pollutant degradation.
Collapse
|