1
|
Kim J, Hong S, Lee G, Um W. Functionalization of layered double hydroxides on bentonite for cesium and iodine retention in high-level radioactive waste disposal. CHEMOSPHERE 2024; 370:144014. [PMID: 39716603 DOI: 10.1016/j.chemosphere.2024.144014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/25/2024]
Abstract
Bentonite is regarded as an adequate buffer material in deep geological repositories and its swelling properties serve to prevent the penetration of groundwater into the repository and to minimize the release of radionuclides. However, bentonite is rarely effective in removing anionic radionuclides due to its permanent negative surface charge. The aim of this study was to enhance the anion removal ability of bentonite by incorporating layered double hydroxides (LDH) with a high anion exchange capacity. The functionalization of CuAlBi LDH on bentonite (CuAlBi LDH@Ben) revealed an effective approach for removing both cesium and iodine from aqueous solutions. The peak shift of the Si-O stretching band to higher frequencies, the vertically oriented platelet morphology, and the increase in specific surface area provide confirmation that LDH platelets grow on the surface of montmorillonite. The CuAlBi LDH@Ben demonstrates enhanced anion retention performance in bentonite without impacting its retention behavior toward cations, as evidenced by Kd values of 1943.1 mL/g for Cs+, 442.4 mL/g for I-, and 650.7 mL/g for IO3-, respectively.
Collapse
Affiliation(s)
- Jueun Kim
- Division of Advanced Nuclear Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, South Korea
| | - Seokju Hong
- Division of Advanced Nuclear Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, South Korea
| | - Gijun Lee
- Disposal Safety Evaluation Research Division, Korea Atomic Energy Research Institute, Daejeon, 34057, South Korea
| | - Wooyong Um
- Division of Advanced Nuclear Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, South Korea; Division of Environmental Science & Engineering, POSTECH, 77, Cheongam-ro, Nam-gu, Pohang, South Korea.
| |
Collapse
|
2
|
Xu H, Zhang H, Qin C, Li X, Xu D, Zhao Y. Groundwater Cr(VI) contamination and remediation: A review from 1999 to 2022. CHEMOSPHERE 2024; 360:142395. [PMID: 38797207 DOI: 10.1016/j.chemosphere.2024.142395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Hexavalent chromium (Cr(VI)) contamination of groundwater has traditionally been an environmental issue of great concern due to its bioaccumulative and highly toxic nature. This paper presents a review and bibliometric analysis of the literature on the interest area "Cr(VI) in groundwater" published in the Web of Science Core Collection from 1999 to 2022. First, information on 203 actual Cr(VI)-contaminated groundwater sites around the world was summarized, and the basic characteristics of the sources and concentrations of contamination were derived. 68.95% of the sites were due to human causes and 56.43% of these sites had Cr(VI) concentrations in the range of 0-10 mg/L. At groundwater sites with high Cr(VI) contamination due to natural causes, 75.00% of the sites had Cr(VI) concentrations less than 0.2 mg/L. A total of 936 papers on "Cr(VI) in groundwater" were retrieved for bibliometric analysis: interest in research on Cr(VI) in groundwater has grown rapidly in recent years; 59.4% of the papers were published in the field of environmental sciences. A systematic review of the progress of studies on the Cr(VI) removal/remediation based on reduction, adsorption and biological processes is presented. Out of 666 papers on Cr(VI) removal/remediation, 512, 274, and 75 papers dealt with the topics of reduction, adsorption, and bioremediation, respectively. In addition, several studies have demonstrated the potential applicability of natural attenuation in the remediation of Cr(VI)-contaminated groundwater. This paper will help researchers to understand and investigate methodological strategies to remove Cr(VI) from groundwater in a more targeted and effective manner.
Collapse
Affiliation(s)
- Huichao Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Hui Zhang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Xiaoyu Li
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Dan Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
3
|
Hu S, Liu Y, Wei L, Luo D, Wu Q, Huang X, Xiao T. Recent advances in clay minerals for groundwater pollution control and remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24724-24744. [PMID: 38503955 DOI: 10.1007/s11356-024-32911-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Clay minerals are abundant on Earth and have been crucial to the advancement of human civilization. The ability of clay minerals to absorb chemicals is frequently utilized to remove hazardous compounds from aquatic environments. Moreover, clay-based adsorbent products are both environmentally acceptable and affordable. This study provides an overview of advances in clay minerals in the field of groundwater remediation and related predictions. The existing literature was examined using data and information aggregation approaches. Keyword clustering analysis of the relevant literature revealed that clay minerals are associated with groundwater utilization and soil pollution remediation. Principal component analysis was used to assess the relationships among clay mineral modification methods, pollutant properties, and the Langmuir adsorption capacity (Qmax). The results demonstrated that pollutant properties affect the Qmax of pollutants adsorbed by clay minerals. Systematic cluster analysis was utilized to classify the collected data and investigate the relationships. The pollution adsorption mechanism of the unique structure of clay minerals was investigated based on the characterization results. Modified clay minerals exhibited changes in surface functional groups, internal structure, and pHpzc. This review provides a summary of recent clay-based materials and their applications in groundwater remediation, as well as discussions of their challenges and future prospects.
Collapse
Affiliation(s)
- Simin Hu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.
- Linköping University-Guangzhou University Research Center On Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China.
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China.
| | - Lezhang Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Linköping University-Guangzhou University Research Center On Urban Sustainable Development, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Dinggui Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Qihang Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Xuexia Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou, 510006, China
| |
Collapse
|
4
|
De Geest M, Michielsen B, Ciocarlan RG, Cool P, Seftel EM. Structured LDH/Bentonite Composites for Chromium Removal and Recovery from Aqueous Solutions. Molecules 2023; 28:4879. [PMID: 37375434 PMCID: PMC10305446 DOI: 10.3390/molecules28124879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023] Open
Abstract
This study focuses on chromium removal through adsorption and ion exchange using structured calcined layered double hydroxide (LDH) (MgAl)-bentonite composites. Firstly, the powders were structured into granulates to study the effect on Cr sorption kinetics to circumvent the limitations of working with powders in real-life applications. Secondly, the regeneration of the structured composites was optimized to enable multi-cycling operation, which is the key for their applicability beyond laboratory scale. Firstly, the LDH/bentonite ratio was optimized to obtain the best performance for the removal of Cr3+ and Cr6+ species. In powder form, the calcined adsorbent containing 80 wt% LDH and 20 wt% bentonite performed best with an adsorption capacity of 48 and 40 mg/g for Cr3+ and Cr6+, respectively. The desorption was optimized by studying the effect of the NaCl concentration and pH, with a 2 M NaCl solution without pH modification being optimal. The kinetic data of the adsorption and desorption steps were modelled, revealing a pseudo-second order model for both. This was also demonstrated using XRD and Raman measurements after the Cr3+ and Cr6+ adsorption tests, indicating successful uptake and revealing the adsorption mechanism. Finally, five consecutive adsorption-desorption cycles were performed, each showing nearly 100% adsorption and desorption.
Collapse
Affiliation(s)
- Mitra De Geest
- Laboratory of Adsorption & Catalysis, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Bart Michielsen
- VITO Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| | - Radu-G. Ciocarlan
- Laboratory of Adsorption & Catalysis, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Pegie Cool
- Laboratory of Adsorption & Catalysis, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Elena M. Seftel
- VITO Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
5
|
Bui NT, Le LC, Hoang TT, Nguyen HT, Tran NTT, Hoang TKA. Effective aqueous chromate treatment using triethanolamine anacardate coated magnetic nanoparticles. ENVIRONMENTAL RESEARCH 2023; 226:115675. [PMID: 36906268 DOI: 10.1016/j.envres.2023.115675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Low-cost adsorbents derived from agricultural by-products incorporated magnetic nanoparticles (NPs) are promising for wastewater treatment. They are always preferred due to their great performance and easy separation. This study reports cobalt superparamagnetic (CoFe2O4) nanoparticles (NPs) incorporated with triethanolamine (TEA) based surfactants from cashew nut shell liquid, namely TEA-CoFe2O4, for the removal of chromium (VI) ions from aqueous solutions. To have detailed characteristics of the morphology and structural properties, scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry (VSM) were employed. The fabricated TEA-CoFe2O4 particles exhibit soft and superparamagnetic properties, which make the nanoparticles easily recycled by using a magnet. Chromate adsorption on the TEA-CoFe2O4 nanomaterials reached an optimal efficiency of 84.3% at pH = 3 with the initial adsorbent dose of 10 g/L and chromium (VI) concentration of 40 mg/L. The TEA-CoFe2O4 nanoparticles can maintain the effective adsorption of chromium (VI) ion (by 29% of efficiency loss) and retain the magnetic separation using a magnet up to three cycles of the regeneration, which promise a high potential of this low-cost adsorbent for long-term treatment of heavy metal ions from polluted waters.
Collapse
Affiliation(s)
- Nghia Tan Bui
- Faculty of Food Science and Technology, Ho Chi Minh City University of Food Industry, Ho Chi Minh, Viet Nam
| | - Linh Chi Le
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh, Viet Nam
| | - Thanh T Hoang
- Department of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh, Viet Nam
| | - Hang Thi Nguyen
- Faculty of Garment Technology - Fashion, Industrial University of Ho Chi Minh City, Ho Chi Minh, Viet Nam
| | | | - Tuan K A Hoang
- Hydro-Quebec Research Institute, 1800 Boulevard Lionel-Boulet, Varennes, QC J3X 1S1, Canada
| |
Collapse
|
6
|
Chen YJ, Uan JY. The Effect of Lithium Ion Leaching from Calcined Li-Al Hydrotalcite on the Rapid Removal of Ni 2+/Cu 2+ from Contaminated Aqueous Solutions. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091477. [PMID: 37177022 PMCID: PMC10180396 DOI: 10.3390/nano13091477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
A layered double hydroxide (LDH) calcined-framework adsorbent was investigated for the rapid removal of heavy metal cations from plating wastewater. Li-Al-CO3 LDH was synthesized on an aluminum lathe waste frame surface to prepare the sorbent. The calcination treatment modified the LDH surface properties, such as the hydrophilicity and the surface pH. The change in surface functional groups and the leaching of lithium ions affected the surface properties and the adsorption capacity of the heavy metal cations. A zeta potential analysis confirmed that the 400 °C calcination changed the LDH surface from positively charged (+10 mV) to negatively charged (-17 mV). This negatively charged surface contributed to the sorbent instantly bonding with heavy metal cations in large quantities, as occurs during contact with wastewater. The adsorption isotherms could be fitted using the Freundlich model. The pseudo-second-order model and the rate-controlled liquid-film diffusion model successfully simulated the adsorption kinetics, suggesting that the critical adsorption step was a heterogeneous surface reaction. This study also confirmed that the recovered nickel and/or copper species could be converted into supported metal nanoparticles with a high-temperature hydrogen reduction treatment, which could be reused as catalysts.
Collapse
Affiliation(s)
- Yu-Jia Chen
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Jun-Yen Uan
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung 402, Taiwan
- Industrial and Intelligent Technology Degree Program, Academy of Circular Economy, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
7
|
He H, Chai K, Wu T, Qiu Z, Wang S, Hong J. Adsorption of Rhodamine B from Simulated Waste Water onto Kaolin-Bentonite Composites. MATERIALS 2022; 15:ma15124058. [PMID: 35744117 PMCID: PMC9227572 DOI: 10.3390/ma15124058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/18/2022]
Abstract
Organic dye rhodamine B is one of the common organic pollutants in the water and soil environment. This study investigated the feasibility of removing rhodamine B from an aqueous solution through adsorption by kaolin, kaolin-sodium bentonite, and kaolin-organic bentonite. Batch adsorption test results showed that the maximum adsorption quantities of kaolin, kaolin-sodium bentonite, and kaolin-organic bentonite were 7.76 mg/g, 11.26 mg/g, and 12.68 mg/g, respectively, implying that the addition of bentonite to kaolin can effectively improve its adsorption capacity for rhodamine B. Moreover, the Langmuir isotherm model is suitable to describe the adsorption of rhodamine B by kaolin and kaolin-sodium bentonite, while it is preferable to use the Freundlich isotherm model in the case of kaolin-organic bentonite. The adsorption kinetic characteristics of rhodamine B, by these three adsorbents, are suitable to be described with a pseudo-second order kinetic model. Furthermore, the characteristics of the above three adsorbents were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The above results indicated that kaolin and organic bentonite can be used to design efficient adsorbents for organic pollutants similar to rhodamine B.
Collapse
Affiliation(s)
- Haijie He
- College of Civil and Architectural Engineering, Zhejiang University, Hangzhou 310000, China;
- College of Civil and Architectural Engineering, Taizhou University, Taizhou 318000, China; (K.C.); (J.H.)
- Fangyuan Construction Group Co., Ltd., Taizhou 317700, China
| | - Kuan Chai
- College of Civil and Architectural Engineering, Taizhou University, Taizhou 318000, China; (K.C.); (J.H.)
- School of Civil Engineering, Shenyang Jianzhu University, Shenyang 110000, China
| | - Tao Wu
- College of Civil Engineering and Architecture, Jiangsu University of Science and Technology, Zhenjiang 212000, China
- Jiangsu Province Engineering Research Center of Geoenvironmental Disaster Prevention and Remediation, Jiangsu University of Science and Technology, Zhenjiang 212000, China
- Correspondence: (T.W.); (Z.Q.); (S.W.)
| | - Zhanhong Qiu
- College of Civil and Architectural Engineering, Taizhou University, Taizhou 318000, China; (K.C.); (J.H.)
- Correspondence: (T.W.); (Z.Q.); (S.W.)
| | - Shifang Wang
- College of Civil and Architectural Engineering, Taizhou University, Taizhou 318000, China; (K.C.); (J.H.)
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221018, China
- Correspondence: (T.W.); (Z.Q.); (S.W.)
| | - Jie Hong
- College of Civil and Architectural Engineering, Taizhou University, Taizhou 318000, China; (K.C.); (J.H.)
| |
Collapse
|
8
|
Faraki Z, Bodaghifard MA. Synthesis and characterization of a highly functionalized cationic porous organic polymer as an efficient adsorbent for removal of hazardous nitrate and chromate ions. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|