1
|
Cebadero-Dominguez Ó, Díez-Quijada L, Puerto M, Prieto A, Cameán AM, Jos Á. In vitro evaluation of the toxicity mechanisms of two functionalized reduced graphene oxide derivatives. Chem Biol Interact 2024; 406:111359. [PMID: 39706313 DOI: 10.1016/j.cbi.2024.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Abstract
Dodecyl amine functionalized reduced graphene oxide (DA-rGO) and [2-(methacryloyloxy) ethyl] trimethylammonium chloride functionalized rGO (MTAC-rGO) have been developed and characterised for their further use in the food packaging industry as food contact materials. But before their application, an authorization procedure is required in which their safety plays a key role. Therefore, the aim of this work was to evaluate their toxicity with focus on two different toxicity mechanisms: genotoxicity and immunotoxicity. Following the recommendations of the European Food Safety Authority, the mutagenicity and genotoxicity were evaluated by the mouse lymphoma assay and the micronucleus assay, respectively, in L5178Y TK cells. Both assays did not show any effect at the tested concentrations (up to 200 μg/mL). The potential immunotoxicity was evaluated on two human cell lines: THP-1 (monocytes) and Jurkat (lymphocytes). The results showed that the highest cytotoxicity was induced by MTAC-rGO in Jurkat cells. The two functionalized rGO compounds did not significantly affect the differentiation process of monocytes into macrophages. In general, both compounds altered the expression of different cytokines, with the most prominent changes observed with MTAC-rGO in THP-1 cells. Moreover, MTAC-rGO induced the most evident differences in markers of cell death mechanisms. Also, for this graphene derivative, increased levels of IL-1β and TNF-α in THP-1 cell supernatants were observed by ELISA. In conclusion, a case-by-case evaluation is necessary as both functionalized rGO compounds exhibit distinct toxicity profiles that warrant further investigation before their application in the food industry.
Collapse
Affiliation(s)
- Óscar Cebadero-Dominguez
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville. Spain
| | - Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville. Spain
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville. Spain.
| | - Alejandro Prieto
- Packaging, Transport and Logistic Research Institute, Albert Einstein, 1, Paterna, 46980 Valencia, Spain
| | - Ana María Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville. Spain
| | - Ángeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n°2, 41012 Seville. Spain
| |
Collapse
|
2
|
Kyrylenko S, Chorna I, Klishchova Z, Yanko I, Roshchupkin A, Deineka V, Diedkova K, Konieva A, Petrichenko O, Kube-Golovin I, Wennemuth G, Coy E, Roslyk I, Baginskiy I, Zahorodna V, Gogotsi O, Chacon B, Cartarozzi LP, Oliveira ALR, Iatsunskyi I, Gogotsi Y, Pogorielov M. Elucidation of Potential Genotoxicity of MXenes Using a DNA Comet Assay. ACS APPLIED BIO MATERIALS 2024; 7:8351-8366. [PMID: 39625730 DOI: 10.1021/acsabm.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
MXenes are among the most diverse and prominent 2D materials. They are being explored in almost every field of science and technology, including biomedicine. In particular, they are being investigated for photothermal therapy, drug delivery, medical imaging, biosensing, tissue engineering, blood dialysis, and antibacterial coatings. Despite their proven biocompatibility and low cytotoxicity, their genotoxicity has not been addressed. To investigate whether MXenes interfere with DNA integrity in cultured cells, we loaded the cells with MXenes and examined the fragmentation of their chromosomal DNA by a DNA comet assay. The presence of both Ti3C2Tx and Nb4C3Tx MXenes generated DNA comets, suggesting a strong genotoxic effect in murine melanoma and human fibroblast cells. However, no corresponding cytotoxicity was observed, confirming that MXenes were well tolerated by the cells. The lateral size of the MXene flakes was critical for developing the DNA comets; submicrometer flakes induced the DNA comets, while larger flakes did not. MXenes did not induce DNA comets in dead cells. Moreover, the extraction of the chromosomal DNA from the MXene-loaded cells or mixing the purified DNA with MXenes showed no signs of DNA fragmentation. Unconstrained living MXene-loaded cells did not show cleavage of the DNA with MXenes under electrophoresis conditions. Thus, the DNA comet assay showed the ability of submicrometer MXene particles to penetrate living cells and induce DNA fragmentation under the applied field. The most probable mechanism of DNA comet formation is the rotation and movement of submicrometer MXene flakes inside cells in an electric field, leading to cleavage and DNA shredding by MXene's razor-sharp edges. Under all other conditions of interest, titanium- and niobium-carbide-based MXenes showed excellent biocompatibility and no signs of cytotoxicity or genotoxicity. These findings may contribute to the development of strategies for cancer therapy.
Collapse
Affiliation(s)
- Sergiy Kyrylenko
- Biomedical Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40007, Ukraine
| | - Inna Chorna
- Biomedical Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40007, Ukraine
| | - Zhanna Klishchova
- Biomedical Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40007, Ukraine
- Federal University of Lavras UFLA, Lavras, Minas Gerais CEP 37203-202, Brazil
| | - Ilya Yanko
- Biomedical Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40007, Ukraine
| | - Anton Roshchupkin
- Biomedical Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40007, Ukraine
| | - Volodymyr Deineka
- Biomedical Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40007, Ukraine
- University of Latvia, Institute of Atomic Physics and Spectroscopy, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Kateryna Diedkova
- Biomedical Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40007, Ukraine
- University of Latvia, Institute of Atomic Physics and Spectroscopy, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Anastasia Konieva
- Biomedical Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40007, Ukraine
- Department of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstr. 55, Essen D-45147, Germany
| | - Oksana Petrichenko
- University of Latvia, Institute of Atomic Physics and Spectroscopy, 3 Jelgavas Street, Riga LV-1004, Latvia
| | - Irina Kube-Golovin
- Department of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstr. 55, Essen D-45147, Germany
| | - Gunther Wennemuth
- Department of Anatomy, University Hospital, University Duisburg-Essen, Hufelandstr. 55, Essen D-45147, Germany
| | - Emerson Coy
- NanoBioMedical Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., Poznan 61-614, Poland
| | - Iryna Roslyk
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03680, Ukraine
- A.J. Drexel Nanomaterials Institute and Departmental of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Ivan Baginskiy
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03680, Ukraine
| | - Veronika Zahorodna
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03680, Ukraine
| | - Oleksiy Gogotsi
- Materials Research Centre, 3 Krzhizhanovskogo Street, Kyiv 03680, Ukraine
| | - Benjamin Chacon
- A.J. Drexel Nanomaterials Institute and Departmental of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Luciana P Cartarozzi
- Laboratory of Nerve Regeneration, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Alexandre L R Oliveira
- Laboratory of Nerve Regeneration, Institute of Biology, University of Campinas, Campinas, São Paulo 13083-862, Brazil
| | - Igor Iatsunskyi
- NanoBioMedical Centre, Adam Mickiewicz University, 3, Wszechnicy Piastowskiej Str., Poznan 61-614, Poland
| | - Yury Gogotsi
- A.J. Drexel Nanomaterials Institute and Departmental of Materials Science and Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Maksym Pogorielov
- Biomedical Research Center, Sumy State University, 31 Sanatorna Street, Sumy 40007, Ukraine
- University of Latvia, Institute of Atomic Physics and Spectroscopy, 3 Jelgavas Street, Riga LV-1004, Latvia
| |
Collapse
|
3
|
Mustafov D, Siddiqui SS, Kukol A, Lambrou GI, Shagufta, Ahmad I, Braoudaki M. MicroRNA-Dependent Mechanisms Underlying the Function of a β-Amino Carbonyl Compound in Glioblastoma Cells. ACS OMEGA 2024; 9:31789-31802. [PMID: 39072119 PMCID: PMC11270567 DOI: 10.1021/acsomega.4c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024]
Abstract
Glioblastoma (GB) is an aggressive brain malignancy characterized by its invasive nature. Current treatment has limited effectiveness, resulting in poor patients' prognoses. β-Amino carbonyl (β-AC) compounds have gained attention due to their potential anticancerous properties. In vitro assays were performed to evaluate the effects of an in-house synthesized β-AC compound, named SHG-8, upon GB cells. Small RNA sequencing (sRNA-seq) and biocomputational analyses investigated the effects of SHG-8 upon the miRNome and its bioavailability within the human body. SHG-8 exhibited significant cytotoxicity and inhibition of cell migration and proliferation in U87MG and U251MG GB cells. GB cells treated with the compound released significant amounts of reactive oxygen species (ROS). Annexin V and acridine orange/ethidium bromide staining also demonstrated that the compound led to apoptosis. sRNA-seq revealed a shift in microRNA (miRNA) expression profiles upon SHG-8 treatment and significant upregulation of miR-3648 and downregulation of miR-7973. Real-time polymerase chain reaction (RT-qPCR) demonstrated a significant downregulation of CORO1C, an oncogene and a player in the Wnt/β-catenin pathway. In silico analysis indicated SHG-8's potential to cross the blood-brain barrier. We concluded that SHG-8's inhibitory effects on GB cells may involve the deregulation of various miRNAs and the inhibition of CORO1C.
Collapse
Affiliation(s)
- Denis Mustafov
- School
of Life and Medical Sciences, University
of Hertfordshire, Hatfield, AL10 9AB, United
Kingdom
- College
of Health, Medicine and Life Sciences, Brunel
University London, Uxbridge UB8 3PH, United
Kingdom
| | - Shoib S. Siddiqui
- School
of Life and Medical Sciences, University
of Hertfordshire, Hatfield, AL10 9AB, United
Kingdom
| | - Andreas Kukol
- School
of Life and Medical Sciences, University
of Hertfordshire, Hatfield, AL10 9AB, United
Kingdom
| | - George I. Lambrou
- Choremeio
Research Laboratory, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens,
Greece, Thivon and Levadeias
8, Goudi, 11527 Athens, Greece
- University
Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Thivon and Levadeias 8, 11527 Athens, Greece
| | - Shagufta
- Department
of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab
Emirates
| | - Irshad Ahmad
- Department
of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab
Emirates
| | - Maria Braoudaki
- School
of Life and Medical Sciences, University
of Hertfordshire, Hatfield, AL10 9AB, United
Kingdom
- University
Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Thivon and Levadeias 8, 11527 Athens, Greece
| |
Collapse
|
4
|
Aventaggiato M, Valentini F, Caissutti D, Relucenti M, Tafani M, Misasi R, Zicari A, Di Martino S, Virtuoso S, Neri A, Mardente S. Biological Effects of Small Sized Graphene Oxide Nanosheets on Human Leukocytes. Biomedicines 2024; 12:256. [PMID: 38397858 PMCID: PMC10887315 DOI: 10.3390/biomedicines12020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 02/25/2024] Open
Abstract
Since the discovery of graphene, there has been a wide range of the literature dealing with its versatile structure and easy binding of biomolecules as well as its large loading capacity. In the emerging field of immunotherapy, graphene and its derivatives have potential uses as drug delivery platforms directly into tumour sites or as adjuvants in cancer vaccines, as they are internalized by monocytes which in turn may activate adaptive anti-tumoral immune responses. In this study, we expose cells of the innate immune system and a human acute monocytic leukemia cell line (THP-1) to low doses of small-sized GO nanosheets functionalized with bovine serum albumin (BSA) and fluorescein isothiocyanate (FITC), to study their acute response after internalization. We show by flow cytometry, uptake in cells of GO-BSA-FITC reaches 80% and cell viability and ROS production are both unaffected by exposure to nanoparticles. On the contrary, GO-BSA nanosheets seem to have an inhibitory effect on ROS production, probably due to their antioxidant properties. We also provided results on chemotaxis of macrophages derived from peripheral blood monocytes treated with GO-BSA. In conclusion, we showed the size of nanosheets, the concentration used and the degree of functionalization were important factors for biocompatibility of GO in immune cells. Its low cytotoxicity and high adaptability to the cells of the innate immune system make it a good candidate for deployment in immunotherapy, in particular for delivering protein antigens to monocytes which activate adaptive immunity.
Collapse
Affiliation(s)
- Michele Aventaggiato
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Federica Valentini
- Department of Sciences and Chemical Technologies, Tor Vergata University, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Daniela Caissutti
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Via Alfonso Borelli 50, 00161 Rome, Italy;
| | - Marco Tafani
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Roberta Misasi
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Alessandra Zicari
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Sara Di Martino
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| | - Sara Virtuoso
- Higher Institute of Health (ISS), Viale Regina Elena 299, 00161 Rome, Italy;
| | - Anna Neri
- Department of Biomedicine and Prevention, Tor Vergata University, Viale Montpellier, 1, 00133 Rome, Italy;
| | - Stefania Mardente
- Department of Experimental Medicine, Sapienza University, Viale Regina Elena, 00161 Rome, Italy; (M.A.); (D.C.); (M.T.); (R.M.); (A.Z.); (S.D.M.)
| |
Collapse
|
5
|
Allahbakhsh A, Gadegaard N, Ruiz CM, Shavandi A. Graphene-Based Engineered Living Materials. SMALL METHODS 2024; 8:e2300930. [PMID: 37806771 DOI: 10.1002/smtd.202300930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/22/2023] [Indexed: 10/10/2023]
Abstract
With the rise of engineered living materials (ELMs) as innovative, sustainable and smart systems for diverse engineering and biological applications, global interest in advancing ELMs is on the rise. Graphene-based nanostructures can serve as effective tools to fabricate ELMs. By using graphene-based materials as building units and microorganisms as the designers of the end materials, next-generation ELMs can be engineered with the structural properties of graphene-based materials and the inherent properties of the microorganisms. However, some challenges need to be addressed to fully take advantage of graphene-based nanostructures for the design of next-generation ELMs. This work covers the latest advances in the fabrication and application of graphene-based ELMs. Fabrication strategies of graphene-based ELMs are first categorized, followed by a systematic investigation of the advantages and disadvantages within each category. Next, the potential applications of graphene-based ELMs are covered. Moreover, the challenges associated with fabrication of next-generation graphene-based ELMs are identified and discussed. Based on a comprehensive overview of the literature, the primary challenge limiting the integration of graphene-based nanostructures in ELMs is nanotoxicity arising from synthetic and structural parameters. Finally, we present possible design principles to potentially address these challenges.
Collapse
Affiliation(s)
- Ahmad Allahbakhsh
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Brussels, 1050, Belgium
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Carmen M Ruiz
- Aix Marseille Univ, CNRS, Université de Toulon, IM2NP, UMR 7334, Marseille, F-13397, France
| | - Amin Shavandi
- 3BIO-BioMatter, École polytechnique de Bruxelles, Université libre de Bruxelles (ULB), Brussels, 1050, Belgium
| |
Collapse
|
6
|
Pelin M, Passerino C, Rodríguez-Garraus A, Carlin M, Sosa S, Suhonen S, Vales G, Alonso B, Zurutuza A, Catalán J, Tubaro A. Role of Chemical Reduction and Formulation of Graphene Oxide on Its Cytotoxicity towards Human Epithelial Bronchial Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2189. [PMID: 37570507 PMCID: PMC10420834 DOI: 10.3390/nano13152189] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Graphene-based materials may pose a potential risk for human health due to occupational exposure, mainly by inhalation. This study was carried out on bronchial epithelial 16HBE14o- cells to evaluate the role of chemical reduction and formulation of graphene oxide (GO) on its cytotoxic potential. To this end, the effects of GO were compared to its chemically reduced form (rGO) and its stable water dispersion (wdGO), by means of cell viability reduction, reactive oxygen species (ROS) generation, pro-inflammatory mediators release and genotoxicity. These materials induced a concentration-dependent cell viability reduction with the following potency rank: rGO > GO >> wdGO. After 24 h exposure, rGO reduced cell viability with an EC50 of 4.8 μg/mL (eight-fold lower than that of GO) and was the most potent material in inducing ROS generation, in contrast to wdGO. Cytokines release and genotoxicity (DNA damage and micronucleus induction) appeared low for all the materials, with wdGO showing the lowest effect, especially for the former. These results suggest a key role for GO reduction in increasing GO cytotoxic potential, probably due to material structure alterations resulting from the reduction process. In contrast, GO formulated in a stable dispersion seems to be the lowest cytotoxic material, presumably due to its lower cellular internalization and damaging capacity.
Collapse
Affiliation(s)
- Marco Pelin
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127 Trieste, Italy; (C.P.); (M.C.); (S.S.); (A.T.)
| | - Clara Passerino
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127 Trieste, Italy; (C.P.); (M.C.); (S.S.); (A.T.)
| | - Adriana Rodríguez-Garraus
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland; (A.R.-G.); (S.S.); (G.V.); (J.C.)
| | - Michela Carlin
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127 Trieste, Italy; (C.P.); (M.C.); (S.S.); (A.T.)
| | - Silvio Sosa
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127 Trieste, Italy; (C.P.); (M.C.); (S.S.); (A.T.)
| | - Satu Suhonen
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland; (A.R.-G.); (S.S.); (G.V.); (J.C.)
| | - Gerard Vales
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland; (A.R.-G.); (S.S.); (G.V.); (J.C.)
| | - Beatriz Alonso
- Graphenea S.A., Mikeletegi 83, 20009 San Sebastián, Spain; (B.A.); (A.Z.)
| | - Amaia Zurutuza
- Graphenea S.A., Mikeletegi 83, 20009 San Sebastián, Spain; (B.A.); (A.Z.)
| | - Julia Catalán
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland; (A.R.-G.); (S.S.); (G.V.); (J.C.)
- Department of Anatomy Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Via Fleming 22, 34127 Trieste, Italy; (C.P.); (M.C.); (S.S.); (A.T.)
| |
Collapse
|
7
|
Rodríguez-Garraus A, Passerino C, Vales G, Carlin M, Suhonen S, Tubaro A, Gómez J, Pelin M, Catalán J. Impact of physico-chemical properties on the toxicological potential of reduced graphene oxide in human bronchial epithelial cells. Nanotoxicology 2023; 17:471-495. [PMID: 37799028 DOI: 10.1080/17435390.2023.2265465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
The increasing use of graphene-based materials (GBM) requires their safety evaluation, especially in occupational settings. The same physico-chemical (PC) properties that confer GBM extraordinary functionalities may affect the potential toxic response. Most toxicity assessments mainly focus on graphene oxide and rarely investigate GBMs varying only by one property. As a novelty, the present study assessed the in vitro cytotoxicity and genotoxicity of six reduced graphene oxides (rGOs) with different PC properties in the human bronchial epithelial 16HBE14o - cell line. Of the six materials, rGO1-rGO4 only differed in the carbon-to-oxygen (C/O) content, whereas rGO5 and rGO6 were characterized by different lateral size and number of layers, respectively, but similar C/O content compared with rGO1. The materials were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, laser diffraction and dynamic light scattering, and Brunauer-Emmett-Teller analysis. Cytotoxicity (Luminescent Cell Viability and WST-8 assays), the induction of reactive oxygen species (ROS; 2',7'-dichlorofluorescin diacetate-based assay), the production of cytokines (enzyme-linked immunosorbent assays) and genotoxicity (comet and micronucleus assays) were evaluated. Furthermore, the internalization of the materials in the cells was confirmed by laser confocal microscopy. No relationships were found between the C/O ratio or the lateral size and any of the rGO-induced biological effects. However, rGO of higher oxygen content showed higher cytotoxic and early ROS-inducing potential, whereas genotoxic effects were observed with the rGO of the lowest density of oxygen groups. On the other hand, a higher number of layers seems to be associated with a decreased potential for inducing cytotoxicity and ROS production.
Collapse
Affiliation(s)
| | - Clara Passerino
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Gerard Vales
- Finnish Institute of Occupational Health, Työterveyslaitos, Helsinki, Finland
| | - Michela Carlin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Satu Suhonen
- Finnish Institute of Occupational Health, Työterveyslaitos, Helsinki, Finland
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Julio Gómez
- Avanzare Innovacion Tecnologica S.L, Navarrete, Spain
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Julia Catalán
- Finnish Institute of Occupational Health, Työterveyslaitos, Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
8
|
Flasz B, Dziewięcka M, Ajay AK, Tarnawska M, Babczyńska A, Kędziorski A, Napora-Rutkowski Ł, Ziętara P, Świerczek E, Augustyniak M. Age- and Lifespan-Dependent Differences in GO Caused DNA Damage in Acheta domesticus. Int J Mol Sci 2022; 24:ijms24010290. [PMID: 36613733 PMCID: PMC9820743 DOI: 10.3390/ijms24010290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The rising applicability of graphene oxide (GO) should be preceded by detailed tests confirming its safety and lack of toxicity. Sensitivity to GO of immature, or with different survival strategy, individuals has not been studied so far. Therefore, in the present research, we focused on the GO genotoxic effects, examining selected parameters of DNA damage (total DNA damage, double-strand breaks-DSB, 8-hydroxy-2'-deoxyguanosine-8-OHdG, abasic site-AP sites), DNA damage response parameters, and global methylation in the model organism Acheta domesticus. Special attention was paid to various life stages and lifespans, using wild (H), and selected for longevity (D) strains. DNA damage was significantly affected by stage and/or strain and GO exposure. Larvae and young imago were generally more sensitive than adults, revealing more severe DNA damage. Especially in the earlier life stages, the D strain reacted more intensely/inversely than the H strain. In contrast, DNA damage response parameters were not significantly related to stage and/or strain and GO exposure. Stage-dependent DNA damage, especially DSB and 8-OHdG, with the simultaneous lack or subtle activation of DNA damage response parameters, may result from the general life strategy of insects. Predominantly fast-living and fast-breeding organisms can minimize energy-demanding repair mechanisms.
Collapse
Affiliation(s)
- Barbara Flasz
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Marta Dziewięcka
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Amrendra K. Ajay
- Department of Medicine, Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monika Tarnawska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Agnieszka Babczyńska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Andrzej Kędziorski
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Łukasz Napora-Rutkowski
- Polish Academy of Sciences, Institute of Ichthyobiology and Aquaculture in Gołysz, 43-520 Chybie, Poland
| | - Patrycja Ziętara
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Ewa Świerczek
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, 40-007 Katowice, Poland
- Correspondence: ; Tel.: +48-32-359-1235
| |
Collapse
|