1
|
Bigham A, Fasolino I, Borsacchi S, Valente C, Calucci L, Turacchio G, Pannico M, Serrano-Ruiz M, Ambrosio L, Raucci MG. A theragenerative bio-nanocomposite consisting of black phosphorus quantum dots for bone cancer therapy and regeneration. Bioact Mater 2024; 35:99-121. [PMID: 38283385 PMCID: PMC10818087 DOI: 10.1016/j.bioactmat.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024] Open
Abstract
Recently, the term theragenerative has been proposed for biomaterials capable of inducing therapeutic approaches followed by repairing/regenerating the tissue/organ. This study is focused on the design of a new theragenerative nanocomposite composed of an amphiphilic non-ionic surfactant (Pluronic F127), bioactive glass (BG), and black phosphorus (BP). The nanocomposite was prepared through a two-step synthetic strategy, including a microwave treatment that turned BP nanosheets (BPNS) into quantum dots (BPQDs) with 5 ± 2 nm dimensions in situ. The effects of surfactant and microwave treatment were assessed in vitro: the surfactant distributes the ions homogenously throughout the composite and the microwave treatment chemically stabilizes the composite. The presence of BP enhanced bioactivity and promoted calcium phosphate formation in simulated body fluid. The inherent anticancer activity of BP-containing nanocomposites was tested against osteosarcoma cells in vitro, finding that 150 μg mL-1 was the lowest concentration which prevented the proliferation of SAOS-2 cells, while the counterpart without BP did not affect the cell growth rate. Moreover, the apoptosis pathways were evaluated and a mechanism of action was proposed. NIR irradiation was applied to induce further proliferation suppression on SAOS-2 cells through hyperthermia. The inhibitory effects of bare BP nanomaterials and nanocomposites on the migration and invasion of bone cancer, breast cancer, and prostate cancer cells were assessed in vitro to determine the anticancer potential of nanomaterials against primary and secondary bone cancers. The regenerative behavior of the nanocomposites was tested with healthy osteoblasts and human mesenchymal stem cells; the BPQDs-incorporated nanocomposite significantly promoted the proliferation of osteoblast cells and induced the osteogenic differentiation of stem cells. This study introduces a new multifunctional theragenerative platform with promising potential for simultaneous bone cancer therapy and regeneration.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125, Naples, Italy
| | - Silvia Borsacchi
- Institute for the Chemistry of OrganoMetallic Compounds-ICCOM, Italian National Research Council-CNR, via G. Moruzzi 1, 56124, Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), 56126, Pisa, Italy
| | - Carmen Valente
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Lucia Calucci
- Institute for the Chemistry of OrganoMetallic Compounds-ICCOM, Italian National Research Council-CNR, via G. Moruzzi 1, 56124, Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), 56126, Pisa, Italy
| | - Gabriele Turacchio
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Marianna Pannico
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy (IPCB-CNR), Pozzuoli, Italy
| | - Manuel Serrano-Ruiz
- Institute for the Chemistry of OrganoMetallic Compounds-ICCOM, National Research Council-CNR, Sesto Fiorentino, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125, Naples, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125, Naples, Italy
| |
Collapse
|
2
|
Mun SK, Sim HB, Lee JH, Kim H, Park DH, Lee YA, Han JY, Choi YJ, Son JS, Park J, Lim TH, Yee ST, Chang YT, Lee S, Chang DJ, Kim JJ. Targeting Heme Oxygenase 2 (HO2) with TiNIR, a Theragnostic Approach for Managing Metastatic Non-Small Cell Lung Cancer. Biomater Res 2024; 28:0026. [PMID: 38665698 PMCID: PMC11045274 DOI: 10.34133/bmr.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Despite notable advancements in cancer therapeutics, metastasis remains a primary obstacle impeding a successful prognosis. Our prior study has identified heme oxygenase 2 (HO2) as a promising therapeutic biomarker for the aggressive subsets within tumor. This study aims to systematically evaluate HO2 as a therapeutic target of cancer, with a specific emphasis on its efficacy in addressing cancer metastasis. Through targeted inhibition of HO2 by TiNIR (tumor-initiating cell probe with near infrared), we observed a marked increase in reactive oxygen species. This, in turn, orchestrated the modulation of AKT and cJUN activation, culminating in a substantial attenuation of both proliferation and migration within a metastatic cancer cell model. Furthermore, in a mouse model, clear inhibition of cancer metastasis was unequivocally demonstrated with an HO2 inhibitor administration. These findings underscore the therapeutic promise of targeting HO2 as a strategic intervention to impede cancer metastasis, enhancing the effectiveness of cancer treatments.
Collapse
Affiliation(s)
- Seul-Ki Mun
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hyun Bo Sim
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jae-Hyuk Lee
- Gwangju Center,
Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| | - Hyeongyeong Kim
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Dae-Han Park
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yong-An Lee
- Genome Institute of Singapore (GIS),
Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome, Singapore 138672, Republic of Singapore
| | - Ji Yeon Han
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Yu-Jeong Choi
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jun Sang Son
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jeongwon Park
- Gwangju Center,
Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| | - Tae-Hwan Lim
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Sung-Tae Yee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Young-Tae Chang
- School of Interdisciplinary Bioscience and Bioengineering,
Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- Department of Chemistry,
Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center,
Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
- Department of Systems Biotechnology,
Chung-Ang University, Anseong 17546, Republic of Korea
- Department of Bio-Analysis Science,
University of Science & Technology, Daejeon 34113, Republic of Korea
| | - Dong-Jo Chang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences,
Sunchon National University, Suncheon 57922, Republic of Korea
| | - Jong-Jin Kim
- Department of Biomedical Science,
Sunchon National University, Suncheon 57922, Republic of Korea
| |
Collapse
|