1
|
Liu Y, Ying Y, Xie Q, Gao Z, Shao X, Zhou M, Pei W, Tang X, Tu Y. Bifunctional Ligand Passivation Enables Stable Blue Mixed-Halide CsPb(Br/Cl) 3 Perovskite Quantum Dots toward Light-Emitting Diodes. Inorg Chem 2024; 63:16167-16176. [PMID: 39159335 DOI: 10.1021/acs.inorgchem.4c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mixed-halide CsPb(Br/Cl)3 perovskite quantum dots (PeQDs) have attracted extensive attention in light-emitting diodes (LEDs), but their low photoluminescent efficiency and especially poor stability impede their practical applications. Here, we employ bifunctional didodecyldimethylammonium thiocyanide (DDASCN) with a pseudohalogen SCN- and branched DDA+ to obtain blue-emitting CsPbBr2Cl PeQDs. DDASCN significantly boosts the photoluminescence quantum yield to 92% by inhibiting nonradiative recombination. Importantly, DDASCN PeQDs show excellent stabilities against air, UV light, heat, and polar solvents. These improved performances were explained by density functional theory calculation, which shows that SCN- fills the Cl- vacancy by simultaneously binding with undercoordinated Pb2+ and Cs+, while DDA+ connects undercoordinated Br- and lies parallel to the PeQD core, leading to efficient passivation and a strong binding capacity. Finally, we achieved high-performance white LEDs by integrating our PeQDs, resulting in a color-rendering index of 92.9, a color gamut of 119.61%, and chromaticity coordinates of (0.33, 0.33). This provides an effective method to obtain efficient and stable CsPb(Br/Cl)3 PeQDs for practical applications.
Collapse
Affiliation(s)
- Yongfeng Liu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yupeng Ying
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Qingyu Xie
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Zhaoju Gao
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiuwen Shao
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Min Zhou
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Wei Pei
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| | - Xiaosheng Tang
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, Chongqing 400065, People's Republic of China
| | - Yusong Tu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou 225002, P. R. China
| |
Collapse
|
2
|
Wu C, Li Y, Xia Z, Ji C, Tang Y, Zhang J, Ma C, Gao J. Enhancing Photoluminescence of CsPb(Cl xBr 1-x) 3 Perovskite Nanocrystals by Fe 2+ Doping. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:533. [PMID: 36770495 PMCID: PMC9920428 DOI: 10.3390/nano13030533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The doping of impurity ions into perovskite lattices has been scrupulously developed as a promising method to stabilize the crystallographic structure and modulate the optoelectronic properties. However, the photoluminescence (PL) of Fe2+-doped mixed halide perovskite NCs is still relatively unexplored. In this work, the Fe2+-doped CsPb(ClxBr1-x)3 nanocrystals (NCs) are prepared by a hot injection method. In addition, their optical absorption, photoluminescence (PL), PL lifetimes, and photostabilities are compared with those of undoped CsPb(Br1-xClx)3 NCs. We find the Fe2+ doping results in the redshift of the absorption edge and PL. Moreover, the full width at half maximums (FWHMs) are decreased, PL quantum yields (QYs) are improved, and PL lifetimes are extended, suggesting the defect density is reduced by the Fe2+ doping. Moreover, the photostability is significantly improved after the Fe2+ doping. Therefore, this work reveals that Fe2+ doping is a very promising approach to modulate the optical properties of mixed halide perovskite NCs.
Collapse
Affiliation(s)
- Chang Wu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yan Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhengyao Xia
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yuqian Tang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jinlei Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Ju Gao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
- School Optoelect Engn, Zaozhuang University, Zaozhuang 277160, China
| |
Collapse
|
3
|
Li Q, Zheng X, Shen X, Ding S, Feng H, Wu G, Zhang Y. Optimizing the Synthetic Conditions of "Green" Colloidal AgBiS 2 Nanocrystals Using a Low-Cost Sulfur Source. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3742. [PMID: 36364517 PMCID: PMC9654632 DOI: 10.3390/nano12213742] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Colloidal AgBiS2 nanocrystals (NCs) have attracted increasing attention as a near-infrared absorbent materials with non-toxic elements and a high absorption coefficient. In recent years, colloidal AgBiS2 NCs have typically been synthesized via the hot injection method using hexamethyldisilathiane (TMS) as the sulfur source. However, the cost of TMS is one of the biggest obstacles to large-scale synthesis of colloidal AgBiS2 NCs. Herein, we synthesized colloidal AgBiS2 NCs using oleylamine@sulfur (OLA-S) solution as the sulfur source instead of TMS and optimized the synthesis conditions of colloidal AgBiS2 NCs. By controlling the reaction injection temperature and the dosage of OLA-S, colloidal AgBiS2 NCs with adjustable size can be synthesized. Compared with TMS-based colloidal AgBiS2 NCs, the colloidal AgBiS2 NCs based on OLA-S has good crystallinity and fewer defects.
Collapse
Affiliation(s)
- Qiao Li
- School of Physics, Northwest University, Xi’an 710127, China
| | - Xiaosong Zheng
- School of Physics, Northwest University, Xi’an 710127, China
| | - Xiaoyu Shen
- School of Physics, Northwest University, Xi’an 710127, China
| | - Shuai Ding
- School of Physics, Northwest University, Xi’an 710127, China
| | - Hongjian Feng
- School of Physics, Northwest University, Xi’an 710127, China
| | - Guohua Wu
- Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering University, Harbin 150001, China
| | - Yaohong Zhang
- School of Physics, Northwest University, Xi’an 710127, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Xi’an 710127, China
| |
Collapse
|