1
|
Li K, Li Z, Wang W, Zhang T, Yang X. Design of Double Conductive Layer and Grid-Assistant Face-to-Face Structure for Wide Linear Range, High Sensitivity Flexible Pressure Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14171-14182. [PMID: 38466769 DOI: 10.1021/acsami.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Recently, flexible pressure sensors have drawn great attention because of their potential application in human-machine interfaces, healthcare monitoring, electronic skin, etc. Although many sensors with good performance have been reported, researchers mostly focused on surface morphology regulation, and the effect of the resistance characteristics on the performance of the sensor was still rarely systematically investigated. In this paper, a strategy for modulating electron transport is proposed to adjust the linear range and sensitivity of the sensor. In the modulating process, we constructed a double conductive layer (DCL) and grid-assistant face-to-face structure and obtained the sensor with a wide linear range of 0-700 kPa and a high sensitivity of 57.5 kPa-1, which is one of the best results for piezoresistive sensors. In contrast, the sensor with a single conductive layer (SCL) and simple face-to-face structure exhibited a moderate linear range (7 kPa) and sensitivity (2.8 kPa-1). Benefiting from the great performance, the modulated sensor allows for clear pulse wave detection and good recognition of gait signals, which indicates the great application potential in human daily life.
Collapse
Affiliation(s)
- Kun Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Zonglin Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Weiwei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Tong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
2
|
Duan Y, Wu J, He S, Su B, Li Z, Wang Y. Bioinspired Spinosum Capacitive Pressure Sensor Based on CNT/PDMS Nanocomposites for Broad Range and High Sensitivity. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3265. [PMID: 36234394 PMCID: PMC9565558 DOI: 10.3390/nano12193265] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Flexible pressure sensors have garnered much attention recently owing to their prospective applications in fields such as structural health monitoring. Capacitive pressure sensors have been extensively researched due to their exceptional features, such as a simple structure, strong repeatability, minimal loss and temperature independence. Inspired by the skin epidermis, we report a high-sensitivity flexible capacitive pressure sensor with a broad detection range comprising a bioinspired spinosum dielectric layer. Using an abrasive paper template, the bioinspired spinosum was fabricated using carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites. It was observed that nanocomposites comprising 1 wt% CNTs had excellent sensing properties. These capacitive pressure sensors allowed them to function at a wider pressure range (~500 kPa) while maintaining sensitivity (0.25 kPa-1) in the range of 0-50 kPa, a quick response time of approximately 20 ms and a high stability even after 10,000 loading-unloading cycles. Finally, a capacitive pressure sensor array was created to detect the deformation of tires, which provides a fresh approach to achieving intelligent tires.
Collapse
Affiliation(s)
- Yanhao Duan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| | - Jian Wu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| | - Shixue He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| | - Benlong Su
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| | - Zhe Li
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| | - Youshan Wang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150090, China
- Center for Rubber Composite Materials and Structures, Harbin Institute of Technology, Weihai 264209, China
| |
Collapse
|