1
|
Hazarika G, Ingole PG. Nano-enabled gas separation membranes: Advancing sustainability in the energy-environment Nexus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173264. [PMID: 38772493 DOI: 10.1016/j.scitotenv.2024.173264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Gas separation membranes serve as crucial to numerous industrial processes, including gas purification, energy production, and environmental protection. Recent advancements in nanomaterials have drastically revolutionized the process of developing tailored gas separation membranes, providing unreachable levels of control over the performance and characteristics of the membrane. The incorporation of cutting-edge nanomaterials into the composition of traditional polymer-based membranes has provided novel opportunities. This review critically analyses recent advancements, exploring the diverse types of nanomaterials employed, their synthesis techniques, and their integration into membrane matrices. The impact of nanomaterial incorporation on separation efficiency, selectivity, and structural integrity is evaluated across various gas separation scenarios. Furthermore, the underlying mechanisms behind nanomaterial-enhanced gas transport are examined, shedding light on the intricate interactions between nanoscale components and gas molecules. The review also discusses potential drawbacks and considerations associated with nanomaterial utilization in membrane development, including scalability and long-term stability. This review article highlights nanomaterials' significant impact in revolutionizing the field of selective gas separation membranes, offering the potential for innovation and future directions in this ever-evolving sector.
Collapse
Affiliation(s)
- Gauri Hazarika
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pravin G Ingole
- Chemical Engineering Group, Engineering Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
2
|
Alam MS, Sultana N, Rashid MA, Alhamhoom Y, Ali A, Waheed A, Ansari MS, Aqil M, Mujeeb M. Quality by Design-Optimized Glycerosome-Enabled Nanosunscreen Gel of Rutin Hydrate. Gels 2023; 9:752. [PMID: 37754433 PMCID: PMC10531150 DOI: 10.3390/gels9090752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023] Open
Abstract
Sunburn is caused by prolonged exposure to ultraviolet (UV) rays from the sun, resulting in redness of the skin as well as tenderness, swelling, and blistering issues. During the healing process, it can cause peeling, irritation, and some long-term effects, including premature aging, pigmentation, and a high risk of skin cancer. Rutin has antioxidant and anti-inflammatory effects, which could potentially reduce inflammation and soothe sunburned skin. The objective of the current proposal is to develop and create carbopol gel-encased glycerosomes for the treatment of sunburn. The Design of Expert (DoE) technique was used to optimize the proposed formulation and was subjected to various characterization parameters such as nanovesicles size, polydispersity index (PDI), surface charge, entrapment efficiency (EE), and surface morphology. The optimized rutin-loaded glycerosomes (opt-RUT-loaded-GMs) were further characterised for drug release, 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay, and confocal laser scanning microscopy (CLSM). The formulation showed sustained release, greater permeation into the skin, and good antioxidant activity. The dermatokinetic study of opt-RUT-loaded-GMs confirms that the Rutin hydrate had better retention in the epidermis as compared to the dermis, owing to its potential for long lasting protection after topical application. It was observed that the prepared formulation was stable, highly safe, and had good sun protection factor (SPF) values that could be used as a suitable option for topical drug administration to maximize the therapeutic efficacy of the drugs.
Collapse
Affiliation(s)
- Md. Shabbir Alam
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| | - Niha Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| | - Md. Abdur Rashid
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia; (M.A.R.); (Y.A.)
| | - Yahya Alhamhoom
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62223, Saudi Arabia; (M.A.R.); (Y.A.)
| | - Asad Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| | - Ayesha Waheed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| | - Mo. Suheb Ansari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| | - Mohd. Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| | - Mohd Mujeeb
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (M.S.A.); (N.S.); (A.A.); (A.W.); (M.S.A.); (M.M.)
| |
Collapse
|
3
|
Türkez H, Yıldırım ÖÇ, Öner S, Kadı A, Mete A, Arslan ME, Şahin İO, Yapça ÖE, Mardinoğlu A. Lipoic Acid Conjugated Boron Hybrids Enhance Wound Healing and Antimicrobial Processes. Pharmaceutics 2022; 15:pharmaceutics15010149. [PMID: 36678778 PMCID: PMC9863811 DOI: 10.3390/pharmaceutics15010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Complications of chronic non-healing wounds led to the emergence of nanotechnology-based therapies to enhance healing, facilitate tissue repair, and prevent wound-related complications like infections. Here, we design alpha lipoic acid (ALA) conjugated hexagonal boron nitride (hBN) and boron carbide (B4C) nanoparticles (NPs) to enhance wound healing in human dermal fibroblast (HDFa) cell culture and characterize its antimicrobial properties against Staphylococcus aureus (S. aureus, gram positive) and Escherichia coli (E. coli, gram negative) bacterial strains. ALA molecules are integrated onto hBN and C4B NPs through esterification procedure, and molecular characterizations are performed by using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV-vis spectroscopy. Wound healing and antimicrobial properties are investigated via the use of cell viability assays, scratch test, oxidative stress, and antimicrobial activity assays. Based on our analysis, we observe that ALA-conjugated hBN NPs have the highest wound-healing feature and antimicrobial activity compared to ALA-B4C. On the other hand, hBN, ALA-B4C, and ALA compounds showed promising regenerative and antimicrobial properties. Also, we find that ALA conjugation enhances wound healing and antimicrobial potency of hBN and B4C NPs. We conclude that the ALA-hBN conjugate is a potential candidate to stimulate regeneration process for injuries.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Özge Çağlar Yıldırım
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Sena Öner
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Abdurrahim Kadı
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Abdulkadir Mete
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25050 Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Erzurum Technical University, 25050 Erzurum, Turkey
| | - İrfan Oğuz Şahin
- Department of Pediatrics, Pediatric Cardiology, Faculty of Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey
| | - Ömer Erkan Yapça
- Department of Gynecology and Obstetrics, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH-Royal Institute of Technology, SE-17121 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
- Correspondence:
| |
Collapse
|
4
|
Shao X, Yan C, Wang C, Wang C, Cao Y, Zhou Y, Guan P, Hu X, Zhu W, Ding S. Advanced nanomaterials for modulating Alzheimer's related amyloid aggregation. NANOSCALE ADVANCES 2022; 5:46-80. [PMID: 36605800 PMCID: PMC9765474 DOI: 10.1039/d2na00625a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/15/2022] [Indexed: 05/17/2023]
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disease that brings about enormous economic pressure to families and society. Inhibiting abnormal aggregation of Aβ and accelerating the dissociation of aggregates is treated as an effective method to prevent and treat AD. Recently, nanomaterials have been applied in AD treatment due to their excellent physicochemical properties and drug activity. As a drug delivery platform or inhibitor, various excellent nanomaterials have exhibited potential in inhibiting Aβ fibrillation, disaggregating, and clearing mature amyloid plaques by enhancing the performance of drugs. This review comprehensively summarizes the advantages and disadvantages of nanomaterials in modulating amyloid aggregation and AD treatment. The design of various functional nanomaterials is discussed, and the strategies for improved properties toward AD treatment are analyzed. Finally, the challenges faced by nanomaterials with different dimensions in AD-related amyloid aggregate modulation are expounded, and the prospects of nanomaterials are proposed.
Collapse
Affiliation(s)
- Xu Shao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoren Yan
- School of Medicine, Xizang Minzu University, Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region Xianyang Shaanxi 712082 China
| | - Chao Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Chaoli Wang
- Department of Pharmaceutical Chemistry and Analysis, School of Pharmacy, Air Force Medical University 169 Changle West Road Xi'an 710032 China
| | - Yue Cao
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Yang Zhou
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications (NJUPT) Nanjing 210046 China
| | - Ping Guan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Xiaoling Hu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University 127 Youyi Road Xi'an 710072 China
| | - Wenlei Zhu
- School of the Environment, School of Chemistry and Chemical Engineering, State Key Laboratory of Analytical Chemistry for Life Science, State Key Laboratory of Pollution Control & Resource Reuse, Nanjing University Nanjing 210023 P. R. China
| | - Shichao Ding
- School of Mechanical and Materials Engineering, Washington State University Pullman WA 99164 USA
| |
Collapse
|