1
|
Qiao J, Chen Z, Zhao J, Ren J, Wang H, Zhi C, Li J, Xing B, Nie H. Graphene promotes the growth of Vigna angularis by regulating the nitrogen metabolism and photosynthesis. PLoS One 2024; 19:e0297892. [PMID: 38451974 PMCID: PMC10919591 DOI: 10.1371/journal.pone.0297892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/16/2024] [Indexed: 03/09/2024] Open
Abstract
Graphene has promising applications in agriculture and forestry. In the current study, six different concentrations of graphene (0mg/L, 0.01mg/L, 0.10mg/L, 1.00mg/L, 10.00mg/L, and 100.00mg/L) were used to investigate its effect on the growth and development of V. angularis plants in soil culture. The results showed that the group treated with 1.00mg/L graphene (G-1) had significantly increased plant height (19.86%), stem diameter (24.33%), and leaf area (13.69%), compared to the control group (CK). Moreover, all concentrations of graphene had positive effects on the total root length, total root surface area, and the number of root tips of V. angularis. Compared to the CK group, the G-1 group had significantly increased leaf water potential (37.89%), leaf conductivity (2.25%), and SOD, POD, and CAT activities (47.67%, 35.22%, and 199.3%, respectively). The G-1 group also showed improved leaf net photosynthetic rate, chlorophyll content, and soluble sugar content (51.28%, 24.25%, and 38.35%, respectively), compared to the CK group. Additionally, 1.00mg/L graphene led to a 23.88% increase in the podding rate and a 17.04% increase in the yield of V. angularis plants. The rhizosphere soil of V. angularis treated with 1.00mg/L graphene had a 25.14% increase in hydrolyzable nitrogen content and a 66.67% increase in available phosphorus content. RNA-seq data indicated that 1.00mg/L graphene induced the expression of photosynthesis and nitrogen transmembrane transport genes, including ATP synthase subunit b, photosystem I reaction center subunit XI, photosystem I reaction center subunit IV A, ferredoxin, and psbP-like protein 1, as well as genes for photosynthesis antenna proteins, glutamine synthetase, glutamate dehydrogenase 1, cyanate hydratase, protein fluG-like, and NRT1/PTR family, suggesting that graphene promoted the growth and development of V. angularis by enhancing the photosynthesis and nitrogen metabolism processes in V. angularis plants. Our results indicated that a suitable concentration of graphene could significantly promote the growth of V. angularis plants in soil.
Collapse
Affiliation(s)
- Jun Qiao
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
- Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong, China
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, China
| | - Zhiwen Chen
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
- Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong, China
| | - Jianguo Zhao
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
- Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong, China
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, China
| | - Jing Ren
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, China
| | - Hao Wang
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, China
| | - Caiyan Zhi
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, China
| | - Jingwei Li
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
- Key Laboratory of Graphene Forestry Application of National Forest and Grass Administration, Shanxi Datong University, Datong, China
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong, China
| | - Baoyan Xing
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
| | - Hui Nie
- Engineering Research Center of Coal-based Ecological Carbon Sequestration Technology of the Ministry of Education, Shanxi Datong University, Datong, China
| |
Collapse
|