1
|
Tran GT, Nguyen LM, Nguyen TTT, Nguyen DH, Tran TV. Recent developments in the bio-mediated synthesis of CoFe 2O 4 nanoparticles using plant extracts for environmental and biomedical applications. NANOSCALE ADVANCES 2024:d4na00604f. [PMID: 39364297 PMCID: PMC11446309 DOI: 10.1039/d4na00604f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/08/2024] [Indexed: 10/05/2024]
Abstract
Conventional methods for the synthesis of nanoparticles often involve toxic chemicals, exacerbating environmental issues in the context of climate change and water scarcity. Green synthesis using plant extracts offers a sustainable and viable alternative for CoFe2O4 nanoparticle production, but understanding the mechanisms and applications of this method is challenging. Here, we review the synthesis and applications of CoFe2O4 nanoparticles using plant extracts with emphasis on biomedical activity and water treatment. Plant extract-mediated CoFe2O4 nanoparticles exhibit high surface area, small particle size, unique morphology, sufficient band gap energy, and high saturation magnetization. These nanoparticles demonstrate strong antimicrobial and anticancer activities, highlighting their potential in biomedical treatments. Green CoFe2O4 are effective in removing organic dyes, heavy metals, and pharmaceuticals from water, promoting cleaner water resources. Challenges such as scalability and reproducibility still remain, but ongoing research aims to optimize synthesis protocols and explore new applications. This work underscores the importance of sustainable nanotechnology in addressing environmental challenges.
Collapse
Affiliation(s)
- Giang Thanh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam +84-28-39-404-759 +84-28-3941-1211
- Nong Lam University Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29, District 12 Ho Chi Minh City 700000 Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi 100000 Vietnam
| | | | - Dai Hai Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology 1A TL29, District 12 Ho Chi Minh City 700000 Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam +84-28-39-404-759 +84-28-3941-1211
| |
Collapse
|
2
|
Kaur M, Singh J, Chauhan M, Kumar V, Singh K. Green synthesis of TiO2-Al2O3-ZnFe2O4 nanocomposite using the Hibiscus rosa sinesis and evaluation of its photocatalytic applications. OPEN CERAMICS 2024; 18:100571. [DOI: 10.1016/j.oceram.2024.100571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
3
|
Aridi A, Rabaa M, Mezher M, Naoufal D, Khalil MI, Awad R. Magnetic separation, sunlight-driven photocatalytic activity, and antibacterial studies of Sm-doped Co 0.33Mg 0.33Ni 0.33Fe 2O 4 nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35631-35650. [PMID: 38739338 DOI: 10.1007/s11356-024-33641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Magnetic nanoparticles have emerged as a promising tool for wastewater treatment due to their unique properties. In this regard, Co0.33Mg0.33Ni0.33SmxFe2-xO4 (0.00 ≤ x ≤ 0.08) nanoparticles were prepared to examine their magnetic separation efficiency (MSE), photocatalytic, antibacterial, and antibiofilm performances. Pure nanoparticles, having the highest saturation magnetization (Ms = 31.87 emu/g), exhibit the highest MSE, where 95.6% of nanoparticles were separated after 20 min of applying a magnetic field of 150 mT. The catalytic performance of the prepared samples is examined by the photodegradation of rhodamine B (RhB) dye exposed to direct sunlight radiation. Improved photocatalytic activity is exhibited by Co0.33Mg0.33Ni0.33Sm0.04Fe1.96O4 nanoparticles, labeled as Sm0.04, where the rate of the degradation reaction is enhanced by 4.1 times compared to pure nanoparticles. Rising the pH and reaction temperature improves the rate of the photodegradation reaction of RhB. The incorporation of 15 wt% reduced graphene oxide (rGO) with Sm0.04 enhanced the rate of the reaction by 1.7 and 2.4 times compared with pure Sm0.04 sample and rGO, respectively. The antibacterial and antibiofilm activities against Escherichia coli, Leclercia adecarboxylata, Staphylococcus aureus, and Enterococcus faecium are assessed by the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) broth microdilution, the agar well diffusion, the time-kill assays, the biofilm formation, and destruction assays. The bacteria used in these assessments are isolated from wastewater. The nanoparticles exhibit a bacteriostatic activity, with a better effect against the Gram-positive isolates. Co0.33Mg0.33Ni0.33SmxFe2O4 (x = 0.00) nanoparticles have the best effect. The effect is exerted after 2-3 h of incubation. Gram-positive biofilms are more sensitive to nanoparticles.
Collapse
Affiliation(s)
- Amani Aridi
- Chemistry Department, Faculty of Science, Beirut Arab University, Beirut, Lebanon.
- Inorganic and Organometallic Coordination Chemistry Laboratory, Faculty of Sciences I, Lebanese University, Hadath, Lebanon.
| | - Mariam Rabaa
- Chemistry Department, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Malak Mezher
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Daoud Naoufal
- Inorganic and Organometallic Coordination Chemistry Laboratory, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Mahmoud I Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ramadan Awad
- Physics Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Basic Sciences, Faculty of Computer Science and Artificial Intelligence, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
4
|
Punyasamudram S, Puthalapattu RP, Bathinapatla A, Mulpuri R, Kanchi S, Kumar PVN. Multifunctional characteristics of biosynthesized CoFe 2O 4@Ag nanocomposite by photocatalytic, antibacterial and cytotoxic applications. CHEMOSPHERE 2024; 349:140892. [PMID: 38070614 DOI: 10.1016/j.chemosphere.2023.140892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/12/2023] [Accepted: 12/02/2023] [Indexed: 01/10/2024]
Abstract
Carissa carandas, a traditional medicinal herb with a high concentration of antioxidant phytochemicals, has been used for thousands of years in the Ayurveda, Unani, and homoeopathic schools of medicine. By employing Carissa carandas bark extract as a reducing and capping agent in green biosynthesis, we extend this conventional application to produce CoFe2O4 and CoFe2O4@Ag nanocomposite. A variety of techniques have been used to characterize the synthesised nanocomposite, including UV-Vis, FTIR, XRD, FESEM, EDX, and BET. The CoFe2O4 and CoFe2O4@Ag nanocomposite demonstrated promising antibacterial action against human bacterial pathogens like B. subtilis and S. aureus as gram positive and P. aeruginosa and E. coli as gram negative with inhibition zones of 24.3 ± 0.57, 17.4 ± 0.75 and 20.5 ± 0.5, 19.8 ± 1.6 mm respectively, and the obtained results were superior to the nanocomposite without silver. Moreover, in-vitro cytotoxicity effects of biosynthesized CoFe2O4 and CoFe2O4@Ag were performed on the human breast cancer cell MCF-7. It was found that the MCF-7 cells' 50% inhibitory concentration (IC50) was 60 μg/mL. Additionally, biosynthesized CoFe2O4 and CoFe2O4@Ag nanocomposite was used to demonstrate the photocatalytic eradication of Rhodamine Blue (RhB). Due to the addition of Ag, which increases surface area, conductivity, and increased charge carrier separation, the CoFe2O4@Ag nanocomposite exhibits a high percentage of photocatalytic degradation of ⁓ 98% within 35 min under UV light irradiation. The photocatalytic performance of as-synthesised nanocomposite was evaluated using dye degradation-adsorption in both natural light and dark condition. Under dark conditions, it was found that 2 mg mL-1 CoFe2O4@Ag in RhB aqueous solution (5 ppm) causes dye adsorption in 30 min with an effectiveness of 72%. Consequently, it is anticipated that the CoFe2O4@Ag nanocomposite will be a promising photocatalyst and possibly a noble material for environmental remediation applications.
Collapse
Affiliation(s)
- Sandhya Punyasamudram
- Department of Chemistry, GITAM University, Hyderabad, 502329, Telangana, India; Department of Chemistry, Sri Padmavati Mahila Visvavidyalayam, Tirupati, 517502, Andhra Pradesh, India
| | - Reddy Prasad Puthalapattu
- Department of Chemistry, Institute of Aeronautical Engineering, Hyderabad, 500043, Telangana, India.
| | - Ayyappa Bathinapatla
- Department of Chemistry, CMR Institute of Technology, Bengaluru, 560037, India; Centre of Excellence- Sensors & Nanoelectronics, CMR Institute of Technology, Bengaluru, 560037, India
| | - Ravikumar Mulpuri
- Department of Chemistry, Raghu Engineering College (Autonomous), Dakamarri (v), Bheeminipatnam, Visakhapatnam, 531162, Andhra Pradesh, India
| | - Suvardhan Kanchi
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru, 560 029, India.
| | | |
Collapse
|
5
|
Qian Z, Qin H, Yan W, Zhou G, Liu C, Zhang Z, Yin J, Li Q, Wang T, Zhang L. Enhancing charge transfer efficiency of cerium-iron oxides via Co regulated oxygen vacancies to boost peroxymonosulfate activation for tetracycline degradation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|