1
|
Yu C, Zhou Y, Zhou Y, Liu Z, Liang M, Huang L, Zhao J. Copper Phenylacetylide and TiO 2 Modification for an Efficient Visible-Light-Driven Oxidative Coupling of Amines. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38684661 DOI: 10.1021/acsami.4c00894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The selective oxidation of amines to imines under mild conditions has attracted much attention. Our study reveals that copper phenylacetylide (PhC2Cu) could serve as an efficient photocatalyst for imine synthesis under visible-light irradiation (>400 nm). Utilizing benzylamine as a model reactant, PhC2Cu achieves an imine yield of 50.4%, which is 5 times higher than that of P25 under the same conditions and comparable to the yield obtained by the 3 wt % Au/P25 photocatalyst (55.4%). Further loading 3.9 nm TiO2 onto PhC2Cu through tetrabutyl titanate hydrolysis increases the imine yield to 84.7%, with a Ti:Cu atomic ratio of 3.65%. Control experiments, photoluminescence (PL) spectra, optical pump terahertz probe (OPTP) spectra, and electron spin resonance (ESR) tests confirm that the optimized TiO2 modification promotes the separation of excited carriers and electron transfer in PhC2Cu and facilitates the activation of surface oxygen, thereby enhancing the formation of superoxide radicals, a key active oxygen species in the reaction system. This work presents a promising strategy for efficient imine synthesis via amine coupling and expands the application field of PhC2Cu-based photocatalysts.
Collapse
Affiliation(s)
- Chunzheng Yu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Yiwei Zhou
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
- Tianjin Key Laboratory of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Ye Zhou
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhenkun Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Mao Liang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Lei Huang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jian Zhao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
2
|
Yitagesu G, Leku DT, Workneh GA. Green Synthesis of TiO 2 Using Impatiens rothii Hook. f. Leaf Extract for Efficient Removal of Methylene Blue Dye. ACS OMEGA 2023; 8:43999-44012. [PMID: 38027313 PMCID: PMC10666146 DOI: 10.1021/acsomega.3c06142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
In this work, TiO2 nanoparticles (NPs) were effectively synthesized by a green method using the Impatiens rothii Hook.f. leaf (IL) extract as a capping and reducing agent. The as-synthesized TiO2 NPs were characterized by different characterization methods such as the Brunauer-Emmett-Teller (BET) analysis, high-resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), diffused reflectance spectroscopy (DRS), and X-ray diffraction (XRD) and Raman spectroscopy. The specific surface area from BET analysis was found to be 65 m2/g. The average crystallite size from XRD analysis and average particle size from SEM analysis were found to be ∼11 and ∼25 nm, respectively. The Raman spectroscopy and XRD results showed that the biosynthesized (IL-TiO2) nanoparticles were purely anatase phase. XPS analysis illustrated the formation of Titania with an oxidation state of +4. The DRS study showcased that a blue-shifted intense absorption peak of IL-TiO2 (3.39 eV) compared to the bulk material reported in the literature (3.2 eV). HRTEM micrograph showed the presence of grain boundary with d spacings of 0.352, 0.245, and 0.190, which correspond to the lattice planes of (101), (004), and (200), respectively. From the EDX analysis, the weight percents of titanium and oxygen were found to be 54.33 and 45.67%, respectively. The photoinduced degradation of methylene blue (MB) dye was investigated in the presence of biosynthesized IL-TiO2 NPs photocatalyst. The effect of parameters like catalyst dosage (30 mg/L), initial concentration of MB (15 ppm), pH (10.5), and contact time (100 min) on the removal efficiency was optimized. The maximum photodegradation efficiency under the optimized conditions was found to be 98%.
Collapse
Affiliation(s)
- Getye
Behailu Yitagesu
- Department
of Applied Chemistry, School of Applied and Natural Sciences, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia
| | - Dereje Tsegaye Leku
- Department
of Applied Chemistry, School of Applied and Natural Sciences, Adama Science and Technology University, Adama P.O. Box 1888, Ethiopia
| | - Getachew Adam Workneh
- Department
of Industrial Chemistry, Addis Ababa Science
and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
- Sustainable
Energy Center of Excellence, Addis Ababa
Science and Technology University, Addis Ababa P.O. Box 16417, Ethiopia
| |
Collapse
|
3
|
Jiang K, Li J, Brennan M, Brennan C, Chen H, Qin Y, Yuan M. Smart Indicator Film Based on Sodium Alginate/Polyvinyl Alcohol/TiO 2 Containing Purple Garlic Peel Extract for Visual Monitoring of Beef Freshness. Polymers (Basel) 2023; 15:4308. [PMID: 37959988 PMCID: PMC10649262 DOI: 10.3390/polym15214308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to prepare a novel pH-sensitive smart film based on the addition of purple garlic peel extract (PGE) and TiO2 nanoparticles in a sodium alginate (SA)/polyvinyl alcohol (PVA) matrix to monitor the freshness of beef. FT-IR spectroscopy revealed the formation of stronger interaction forces between PVA/SA, PGE, and TiO2 nanoparticles, which showed good compatibility. In addition, the addition of PGE improved the tensile strength and elongation at break of the composite film, especially in different pH environments, and the color response was obvious. The addition of 1% TiO2 nanoparticles significantly improved the mechanical properties of the film, as well as the light barrier properties of the film. PGE could effectively be uniformly dispersed into the composite film, but it also had a certain slow-release effect on the release of PGE. PGE had high sensitivity under different pH conditions with rich color changes, and the color showed a clear color change from red to yellow-green when the pH increased from 1 to 14. The same change was observed when it was added to the film. In particular, by applying this film to the process of beef preservation, we judged the freshness of beef by monitoring the changes in the TVB-N value and pH value during the storage process of beef and found that the film showed obvious color changes during the storage process of beef, from blue (indicating freshness) to red (indicating non-freshness), and finally to yellow-green (indicating deterioration), which indicated that the color change of the film and the freshness of the beef maintained a highly consistent.
Collapse
Affiliation(s)
- Kai Jiang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Jiang Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Margaret Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia; (M.B.); (C.B.)
| | - Charles Brennan
- School of Science, Royal Melbourne Institute of Technology University, Melbourne 3000, Australia; (M.B.); (C.B.)
| | - Haiyan Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China; (K.J.); (J.L.); (H.C.)
| | - Mingwei Yuan
- Green Preparation Technology of Biobased Materials National & Local Joint Engineering Research Center, Yunnan Minzu University, Kunming 650500, China
| |
Collapse
|
4
|
Coromelci CG, Turcu E, Doroftei F, Palamaru MN, Ignat M. Conjugated Polymer Modifying TiO 2 Performance for Visible-Light Photodegradation of Organics. Polymers (Basel) 2023; 15:2805. [PMID: 37447451 DOI: 10.3390/polym15132805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/18/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Up to now, the use of TiO2 has been considered a promising advanced technology for organic pollutants removal from air or water, since it has high biological and chemical stability, high photoactivity, low toxicity, and low-cost production. However, there are issues to be addressed in enhancing TiO2 performance, and one of the current key issues is redesigning UV-active photocatalysts and making them active in the visible region of the electromagnetic spectrum. This way, solar light absorption will be insured, and thus, a more efficient photocatalyst could be obtained. For this reason, conjugated polymers and their derivatives are considered to act as photosensitizers, being able to shift the TiO2 activity from the UV to the visible region. Therefore, this study focuses on the synthesis of TiO2/conjugated polymer systems, which was accomplished by the deposition of poly-3,4-ethylene-dioxy-thiophene (PEDOT [-C6H4O2S-]n), a low-band semiconductor with an excellent stability due to its extending π-conjugated electron system, on titania nanoarchitecture. First of all, a TiO2 nanoarchitecture was synthesized by an ultrasound-assisted sol-gel method. Then, TiO2/PEDOT systems were obtained and characterized by using different techniques such as X-ray diffraction, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, UV-Vis diffuse reflectance, and N2 sorption measurements. The synthesized composites confirmed their mesoporosity and lower band gap values compared to bare titania, which clearly shows the ability to work as photocatalysts under visible-light activity. Further, we demonstrated that an organic pollutant, Congo Red dye, used as a model molecule could be photodegraded with the synthesized TiO2/PEDOT systems, with efficiencies of up to 95% in the case of TconvPEDOT under UV light and up to 99% for TconvPEDOT under visible-light irradiation, accomplishing in this way a successful synthesis of visible-light-activated titania photocatalyst.
Collapse
Affiliation(s)
- Cristina Giorgiana Coromelci
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iaşi, 11 Carol I Blvd, 700506 Iaşi, Romania
- Institute of Interdisciplinary Research, Department of Exact Sciences and Natural Sciences, "Alexandru Ioan Cuza" University, 11 Carol I Blvd, 700506 Iasi, Romania
| | - Elvira Turcu
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania
| | - Florica Doroftei
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania
| | - Mircea Nicolae Palamaru
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iaşi, 11 Carol I Blvd, 700506 Iaşi, Romania
| | - Maria Ignat
- Faculty of Chemistry, "Alexandru Ioan Cuza" University of Iaşi, 11 Carol I Blvd, 700506 Iaşi, Romania
- Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore GhicaVoda Alley, 700487 Iasi, Romania
| |
Collapse
|
5
|
Mohamed Zahidi M, Mamat MH, Subki ASRA, Abdullah MH, Hassan H, Ahmad MK, Bakar SA, Mohamed A, Ohtani B. Formation of a Nanorod-Assembled TiO 2 Actinomorphic-Flower-like Microsphere Film via Ta Doping Using a Facile Solution Immersion Method for Humidity Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:256. [PMID: 36678009 PMCID: PMC9861450 DOI: 10.3390/nano13020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
This study fabricated tantalum (Ta)-doped titanium dioxide with a unique nanorod-assembled actinomorphic-flower-like microsphere structured film. The Ta-doped TiO2 actinomorphic-flower-like microsphere (TAFM) was fabricated via the solution immersion method in a Schott bottle with a home-made improvised clamp. The samples were characterised using FESEM, HRTEM, XRD, Raman, XPS, and Hall effect measurements for their structural and electrical properties. Compared to the undoped sample, the rutile-phased TAFM sample had finer nanorods with an average 42 nm diameter assembled to form microsphere-like structures. It also had higher oxygen vacancy sites, electron concentration, and mobility. In addition, a reversed double-beam photoacoustic spectroscopy measurement was performed for TAFM, revealing that the sample had a high electron trap density of up to 2.5 μmolg-1. The TAFM showed promising results when employed as the resistive-type sensing film for a humidity sensor, with the highest sensor response of 53,909% obtained at 3 at.% Ta doping. Adding rGO to 3 at.% TAFM further improved the sensor response to 232,152%.
Collapse
Affiliation(s)
- Musa Mohamed Zahidi
- NANO-ElecTronic Centre (NET), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
- Centre for Electrical Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh 13500, Pulau Pinang, Malaysia
| | - Mohamad Hafiz Mamat
- NANO-ElecTronic Centre (NET), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
| | - A Shamsul Rahimi A Subki
- NANO-ElecTronic Centre (NET), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
- Faculty of Electrical and Electronic Engineering Technology, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
| | - Mohd Hanapiah Abdullah
- NANO-ElecTronic Centre (NET), School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Shah Alam 40450, Selangor, Malaysia
- Centre for Electrical Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh 13500, Pulau Pinang, Malaysia
| | - Hamizura Hassan
- Centre for Chemical Engineering Studies, Universiti Teknologi MARA Cawangan Pulau Pinang, Permatang Pauh 13500, Pulau Pinang, Malaysia
| | - Mohd Khairul Ahmad
- Microelectronic and Nanotechnology—Shamsuddin Research Centre, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat 86400, Johor, Malaysia
| | - Suriani Abu Bakar
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Perak, Malaysia
| | - Azmi Mohamed
- Nanotechnology Research Centre, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Perak, Malaysia
| | - Bunsho Ohtani
- Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
6
|
Liang YC, Sun WY. Enhanced photoactive performance of three-layer structured Ag/Cu 2O/TiO 2 composites with tunable crystal microstructures. CrystEngComm 2023. [DOI: 10.1039/d3ce00027c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Ag particle-decorated Cu2O/TiO2 composite films effectively photodegrade MO solution under irradiation.
Collapse
Affiliation(s)
- Yuan-Chang Liang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Wei-Yang Sun
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|