1
|
Stevens D, Charlton-Sevcik AK, Braswell WE, Sayes CM. Evaluating the Antibacterial Potential of Distinct Size Populations of Stabilized Zinc Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39681349 DOI: 10.1021/acsami.4c15245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Engineered nanoparticles are precisely synthesized to exploit unique properties conferred by their small size and high surface area for environmental, biomedical, and agricultural applications. While these physical properties dictate functionality, they can also have various intended and unintended implications for biological systems. Both the particle size and shape influence cellular uptake. Because of zinc's antibacterial properties and role as a plant micronutrient, polyvinylpyrrolidone stabilized zinc nanoparticles (ZnNP) were selected for this study. Four synthesis methods were tested to produce distinct size populations of polymer-coated ZnNP, and all utilized water as the solvent to promote sustainable, green chemistry. The antibacterial activity of ZnNP was assessed in two agriculturally relevant bacteria strains: Escherichia coli and Bacillus cereus. To further examine the effects of ZnNP on bacterial cells, reactive oxygen species (ROS) generation was measured via hydrogen peroxide (H2O2) production. The bacteria's incubation temperature was also altered to assess bacterial growth and susceptibility after exposure to ZnNP. The ZnNP from the smaller size population inhibited the most growth across bacterial strains, assays, and incubation temperatures. Increased antibacterial effects and ROS production were observed after incubation at a higher temperature. These results indicate that the deliberately designed nanoparticles are potentially valuable in microbial control and offer promising solutions for the future of healthy agricultural systems.
Collapse
Affiliation(s)
- Dinny Stevens
- Department of Environmental Science, Baylor University, Waco, Texas 76798, United States
| | | | - W Evan Braswell
- Insect Management and Molecular Diagnostics Laboratory, USDA APHIS PPQ S&T, Edinburg, Texas 78541, United States
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, Waco, Texas 76798, United States
| |
Collapse
|
2
|
AlHarethi AA, Abdullah QY, AlJobory HJ, Anam AM, Arafa RA, Farroh KY. Zinc oxide and copper oxide nanoparticles as a potential solution for controlling Phytophthora infestans, the late blight disease of potatoes. DISCOVER NANO 2024; 19:105. [PMID: 38907852 PMCID: PMC11193706 DOI: 10.1186/s11671-024-04040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
Late blight, caused by Phytophthora infestans, is a major potato disease globally, leading to significant economic losses of $6.7 billion. To address this issue, we evaluated the antifungal activity of ZnO and CuO nanoparticles (NPs) against P. infestans for the first time in laboratory and greenhouse conditions. Nanoparticles were synthesized via a chemical precipitation method and characterized using various techniques. The XRD results revealed that the synthesized ZnO nanoparticles had a pure hexagonal wurtzite crystalline structure, whereas the CuO NPs had a monoclinic crystalline structure. TEM images confirmed the synthesis of quasi-spherical nanoparticles with an average size of 11.5 nm for ZnO NPs and 24.5 nm for CuO NPs. The UV-Vis Spectral Report showed peaks corresponding to ZnO NPs at 364 nm and 252 nm for CuO NPs.In an in vitro study, both ZnO and CuO NPs significantly (p < 0.05) inhibited the radial growth of P. infestans at all tested concentrations compared to the untreated control. The highest inhibitory effect of 100% was observed with ZnO and CuO NPs at 30 mg/L. A lower inhibition of 60.4% was observed with 10 mg/L CuO NPs. Under greenhouse conditions, 100 mg/L ZnO NPs was the most effective treatment for controlling potato late blight, with an efficacy of 71%. CuO NPs at 100 mg/L followed closely, with an efficacy of 69%. Based on these results, ZnO and CuO NPs are recommended as promising eco-friendly fungicides for the management and control of potato late blight after further research.
Collapse
Affiliation(s)
- Amira A AlHarethi
- Department of Biological Science, Faculty of Science, Sana'a University, Sana'a, Yemen.
| | - Qais Y Abdullah
- Department of Biological Science, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - Hala J AlJobory
- Department of Biological Science, Faculty of Science, Sana'a University, Sana'a, Yemen
| | - AbdulRahman M Anam
- Department of Pharmacology, Faculty of Medicine and Health Science, Sana'a University, Sana'a, Yemen
| | - Ramadan A Arafa
- Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Khaled Y Farroh
- Nanotechnology and Advanced Materials Central Lab, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
3
|
Khutsishvili SS, Perfileva AI, Kon'kova TV, Lobanova NA, Sadykov EK, Sukhov BG. Copper-Containing Bionanocomposites Based on Natural Raw Arabinogalactan as Effective Vegetation Stimulators and Agents against Phytopathogens. Polymers (Basel) 2024; 16:716. [PMID: 38475399 DOI: 10.3390/polym16050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/28/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Novel copper-containing bionanocomposites based on the natural raw arabinogalactan have been obtained as universal effective agents against phytopathogen Clavibacter sepedonicus and development stimulants of agricultural plants. Thus, the use of such nanosystems offers a solution to the tasks set in biotechnology while maintaining high environmental standards using non-toxic, biocompatible, and biodegradable natural biopolymers. The physicochemical characteristics of nanocomposites were determined using a number of analytical methods (elemental analysis, transmission electron microscopy and spectroscopic parameters of electron paramagnetic resonance, UV-visible, etc.). The results of the study under the influence of the nanocomposites on the germination of soybean seeds (Glycine max L.) and the vegetation of potatoes (Solanum tuberosum L.) showed the best results in terms of biometric indicators. It is especially worth noting the pronounced influence of the nanocomposite on the development of the root system, and the increase in the mass of the potato root system reached 19%. It is also worth noting that the nanocomposites showed a stimulating effect on the antioxidant system and did not have a negative effect on the content of pigments in potato tissues. Moreover, the resulting bionanocomposite showed a pronounced antibacterial effect against the phytopathogenic bacterium. During the co-incubation of phytopathogen Clavibacter sepedonicus in the presence of the nanocomposite, the number of cells in the bacterial suspension decreased by up to 40% compared to that in the control, and a 10% decrease in the dehydrogenase activity of cells was also detected.
Collapse
Affiliation(s)
- Spartak S Khutsishvili
- Rafael Agladze Institute of Inorganic Chemistry and Electrochemistry, Ivane Javakhishvili Tbilisi State University, 11 Mindeli St., 0186 Tbilisi, Georgia
| | - Alla I Perfileva
- Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Tatyana V Kon'kova
- Laboratory of Nanoparticles, V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Natalya A Lobanova
- Laboratory of Unsaturated Heteroatomic Compounds, A. E. Favorky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia
| | - Evgeniy K Sadykov
- Laboratory of Metal-Organic Coordination Polymers, A. V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Boris G Sukhov
- Laboratory of Nanoparticles, V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Jiang H, Li L, Li Z, Chu X. Metal-based nanoparticles in antibacterial application in biomedical field: Current development and potential mechanisms. Biomed Microdevices 2024; 26:12. [PMID: 38261085 PMCID: PMC10806003 DOI: 10.1007/s10544-023-00686-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 01/24/2024]
Abstract
The rise in drug resistance in pathogenic bacteria greatly endangers public health in the post-antibiotic era, and drug-resistant bacteria currently pose a great challenge not only to the community but also to clinical procedures, including surgery, stent implantation, organ transplantation, and other medical procedures involving any open wound and compromised human immunity. Biofilm-associated drug failure, as well as rapid resistance to last-resort antibiotics, necessitates the search for novel treatments against bacterial infection. In recent years, the flourishing development of nanotechnology has provided new insights for exploiting promising alternative therapeutics for drug-resistant bacteria. Metallic agents have been applied in antibacterial usage for several centuries, and the functional modification of metal-based biomaterials using nanotechnology has now attracted great interest in the antibacterial field, not only for their intrinsic antibacterial nature but also for their ready on-demand functionalization and enhanced interaction with bacteria, rendering them with good potential in further translation. However, the possible toxicity of MNPs to the host cells and tissue still hinders its application, and current knowledge on their interaction with cellular pathways is not enough. This review will focus on recent advances in developing metallic nanoparticles (MNPs), including silver, gold, copper, and other metallic nanoparticles, for antibacterial applications, and their potential mechanisms of interaction with pathogenic bacteria as well as hosts.
Collapse
Affiliation(s)
- Hao Jiang
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lingzhi Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Zhong Li
- Sichuan Provincial Laboratory of Orthopaedic Engineering, Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xiang Chu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Emergency, Daping Hospital, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
5
|
Joubert O. Editorial for the Special Issue "Biological and Toxicological Studies of Nanoparticles". NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1968. [PMID: 37446483 DOI: 10.3390/nano13131968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Nanoparticles have attracted a great deal of attention over the past two decades or more due to their unique size-dependent physical and chemical properties [...].
Collapse
Affiliation(s)
- Olivier Joubert
- Institut Jean Lamour, CNRS 7198, University of Lorraine, 54015 Nancy, France
| |
Collapse
|
6
|
Shafiq A, Deshmukh AR, AbouAitah K, Kim BS. Green Synthesis of Controlled Shape Silver Nanostructures and Their Peroxidase, Catalytic Degradation, and Antibacterial Activity. J Funct Biomater 2023; 14:325. [PMID: 37367289 DOI: 10.3390/jfb14060325] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/10/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
Nanoparticles with unique shapes have garnered significant interest due to their enhanced surface area-to-volume ratio, leading to improved potential compared to their spherical counterparts. The present study focuses on a biological approach to producing different silver nanostructures employing Moringa oleifera leaf extract. Phytoextract provides metabolites, serving as reducing and stabilizing agents in the reaction. Two different silver nanostructures, dendritic (AgNDs) and spherical (AgNPs), were successfully formed by adjusting the phytoextract concentration with and without copper ions in the reaction system, resulting in particle sizes of ~300 ± 30 nm (AgNDs) and ~100 ± 30 nm (AgNPs). These nanostructures were characterized by several techniques to ascertain their physicochemical properties; the surface was distinguished by functional groups related to polyphenols due to plant extract that led to critical controlling of the shape of nanoparticles. Nanostructures performance was assessed in terms of peroxidase-like activity, catalytic behavior for dye degradation, and antibacterial activity. Spectroscopic analysis revealed that AgNDs demonstrated significantly higher peroxidase activity compared to AgNPs when evaluated using chromogenic reagent 3,3',5,5'-tetramethylbenzidine. Furthermore, AgNDs exhibited enhanced catalytic degradation activities, achieving degradation percentages of 92.2% and 91.0% for methyl orange and methylene blue dyes, respectively, compared to 66.6% and 58.0% for AgNPs. Additionally, AgNDs exhibited superior antibacterial properties against Gram-negative E. coli compared to Gram-positive S. aureus, as evidenced by the calculated zone of inhibition. These findings highlight the potential of the green synthesis method in generating novel nanoparticle morphologies, such as dendritic shape, compared with the traditionally synthesized spherical shape of silver nanostructures. The synthesis of such unique nanostructures holds promise for various applications and further investigations in diverse sectors, including chemical and biomedical fields.
Collapse
Affiliation(s)
- Ayesha Shafiq
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Aarti R Deshmukh
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Khaled AbouAitah
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Beom-Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
7
|
Oves M, Ansari MO, Ansari MS, Memić A. Graphene@Curcumin-Copper Paintable Coatings for the Prevention of Nosocomial Microbial Infection. Molecules 2023; 28:molecules28062814. [PMID: 36985785 PMCID: PMC10051306 DOI: 10.3390/molecules28062814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
The rise of antimicrobial resistance has brought into focus the urgent need for the next generation of antimicrobial coating. Specifically, the coating of suitable antimicrobial nanomaterials on contact surfaces seems to be an effective method for the disinfection/contact killing of microorganisms. In this study, the antimicrobial coatings of graphene@curcumin-copper (GN@CR-Cu) were prepared using a chemical synthesis methodology. Thus, the prepared GN@CR-Cu slurry was successfully coated on different contact surfaces, and subsequently, the GO in the composite was reduced to graphene (GN) by low-temperature heating/sunlight exposure. Scanning electron microscopy was used to characterize the coated GN@CR-Cu for the coating properties, X-ray photon scattering were used for structural characterization and material confirmation. From the morphological analysis, it was seen that CR and Cu were uniformly distributed throughout the GN network. The nanocomposite coating showed antimicrobial properties by contact-killing mechanisms, which was confirmed by zone inhibition and scanning electron microscopy. The materials showed maximum antibacterial activity against E. coli (24 ± 0.50 mm) followed by P. aeruginosa (18 ± 0.25 mm) at 25 µg/mL spot inoculation on the solid media plate, and a similar trend was observed in the minimum inhibition concentration (80 µg/mL) and bactericidal concentration (160 µg/mL) in liquid media. The synthesized materials showed excellent activity against E. coli and P. aeruginosa. These materials, when coated on different contact surfaces such medical devices, might significantly reduce the risk of nosocomial infection.
Collapse
Affiliation(s)
- Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | | | | | - Adnan Memić
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Candreva A, De Rose R, Perrotta ID, Guglielmelli A, La Deda M. Light-Induced Clusterization of Gold Nanoparticles: A New Photo-Triggered Antibacterial against E. coli Proliferation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13040746. [PMID: 36839113 PMCID: PMC9967119 DOI: 10.3390/nano13040746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 05/14/2023]
Abstract
Metallic nanoparticles show plasmon resonance phenomena when irradiated with electromagnetic radiation of a suitable wavelength, whose value depends on their composition, size, and shape. The damping of the surface electron oscillation causes a release of heat, which causes a large increase in local temperature. Furthermore, this increase is enhanced when nanoparticle aggregation phenomena occur. Local temperature increase is extensively exploited in photothermal therapy, where light is used to induce cellular damage. To activate the plasmon in the visible range, we synthesized 50 nm diameter spherical gold nanoparticles (AuNP) coated with polyethylene glycol and administered them to an E. coli culture. The experiments were carried out, at different gold nanoparticle concentrations, in the dark and under irradiation. In both cases, the nanoparticles penetrated the bacterial wall, but a different toxic effect was observed; while in the dark we observed an inhibition of bacterial growth of 46%, at the same concentration, under irradiation, we observed a bactericidal effect (99% growth inhibition). Photothermal measurements and SEM observations allowed us to conclude that the extraordinary effect is due to the formation, at low concentrations, of a light-induced cluster of gold nanoparticles, which does not form in the absence of bacteria, leading us to the conclusion that the bacterium wall catalyzes the formation of these clusters which are ultimately responsible for the significant increase in the measured temperature and cause of the bactericidal effect. This photothermal effect is achieved by low-power irradiation and only in the presence of the pathogen: in its absence, the lack of gold nanoparticles clustering does not lead to any phototoxic effect. Therefore, it may represent a proof of concept of an innovative nanoscale pathogen responsive system against bacterial infections.
Collapse
Affiliation(s)
- Angela Candreva
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
| | - Renata De Rose
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
| | - Ida Daniela Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis (CM2), University of Calabria, 87036 Rende, Italy
| | - Alexa Guglielmelli
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
- Department of Physics, NLHT-Lab, University of Calabria, 87036 Rende, Italy
| | - Massimo La Deda
- Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende, Italy
- CNR-NANOTEC, Institute of Nanotechnology U.O.S, Cosenza, 87036 Rende, Italy
- Correspondence:
| |
Collapse
|