1
|
Shen Q, Xu X, Liang X, Tang C, Bai X, Shao S, Liang Q, Dong S. Surfactant-modified zein nanoparticles adsorbents for ultrafast and efficient removal of Cr(VI). ENVIRONMENTAL RESEARCH 2025; 264:120284. [PMID: 39491604 DOI: 10.1016/j.envres.2024.120284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The adsorption and removal of heavy metal ions Cr(VI) is of great significance for human health and ecological environment. Here, an ultrafast and high efficient adsorbent for Cr(VI) was developed based on cetyltrimethylammonium bromide (CTAB)-modified zein nanoparticles (C-ZNPs). In comparison to pristine zein nanoparticles (ZNPs) (11.199 m2 g-1), the surfactant-modified C-ZNPs exhibited larger specific surface area (17.002 m2 g-1). Moreover, C-ZNPs had superior dispersion and more positive charge distribution, which contributed to the improvement for adsorption performance. The results showed that the saturated adsorption of Cr(VI) was reached up to 192.27 mg/g using the C-ZNPs nanosorbent at T = 298 K, pH = 4, t = 10s, and C0 = 125 mg/L. The removal rate was significantly faster than that reported natural polymer-based adsorbents. The experimental values were followed Freundich isothermal model and pseudo-second-order kinetic model, indicating that the adsorption occurred primarily through a multimolecular layer adsorption process, with a strong emphasis on chemisorption. Mechanistic investigations further revealed that the adsorption of Cr(VI) onto C-ZNPs was mediated by various interactions, including electrostatic attraction, complexation, and ion exchange. These findings provide insights into the efficient removal of Cr(VI) by C-ZNPs and suggest potential applications in water treatment and environmental remediation.
Collapse
Affiliation(s)
- Qing Shen
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaomeng Xu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaojing Liang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Cong Tang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoping Bai
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shijun Shao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Qing Liang
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Shuqing Dong
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
2
|
Khan I, Ali A, Naz A, Baig ZT, Shah W, Rahman ZU, Shah TA, Attia KA, Mohammed AA, Hafez YM. Removal of Cr(VI) from Wastewater Using Acrylonitrile Grafted Cellulose Extracted from Sugarcane Bagasse. Molecules 2024; 29:2207. [PMID: 38792069 PMCID: PMC11124459 DOI: 10.3390/molecules29102207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 05/26/2024] Open
Abstract
A highly efficient low-cost adsorbent was prepared using raw and chemically modified cellulose isolated from sugarcane bagasse for decontamination of Cr(VI) from wastewater. First, cellulose pulp was isolated from sugarcane bagasse by subjecting it to acid hydrolysis, alkaline hydrolysis and bleaching with sodium chlorate (NaClO3). Then, the bleached cellulose pulp was chemically modified with acrylonitrile monomer in the presence Fenton's reagent (Fe+2/H2O2) to carry out grafting of acrylonitrile onto cellulose by atom transfer radical polymerization. The developed adsorbent (acrylonitrile grafted cellulose) was analyzed by X-ray diffraction analysis (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Both raw cellulose and acrylonitrile grafted cellulose were used for chromium removal from wastewater. The effects of metal ion concentration, pH, adsorbent dose and time were studied, and their values were optimized. The optimum conditions for the adsorption of Cr(VI) onto raw and chemically modified cellulose were: metal ion concentration: 50 ppm, adsorbent dose: 1 g, pH: 6, and time: 60 min. The maximum efficiencies of 73% and 94% and adsorption capacities of 125.95 mg/g and 267.93 mg/g were achieved for raw and acrylonitrile grafted cellulose, respectively. High removal efficiency was achieved, owing to high surface area of 79.92 m2/g and functional active binding cites on grafted cellulose. Isotherm and kinetics studies show that the experimental data were fully fitted by the Freundlich isotherm model and pseudo first-order model. The adsorbent (acrylonitrile grafted cellulose) was regenerated using three different types of regenerating reagents and reused thirty times, and there was negligible decrease (19%) in removal efficiency after using it for 30 times. Hence, it is anticipated that acrylonitrile could be utilized as potential candidate material for commercial scale Cr(VI) removal from wastewater.
Collapse
Affiliation(s)
- Idrees Khan
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Ashraf Ali
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
- Department of Chemistry, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan
| | - Alia Naz
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Zenab Tariq Baig
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Wisal Shah
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Zia Ur Rahman
- Department of Environmental Science, Faculty of Physical & Applied Sciences, The University of Haripur, Haripur 22620, Pakistan; (I.K.); (Z.T.B.); (W.S.); (Z.U.R.)
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo 255000, China;
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (K.A.A.); (A.A.M.)
| | - Arif Ahmed Mohammed
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (K.A.A.); (A.A.M.)
| | - Yaser M. Hafez
- EPCRS Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt;
| |
Collapse
|
3
|
Zinicovscaia I, Yushin N, Grozdov D, Rodlovskaya E, Khiem LH. Yeast—As Bioremediator of Silver-Containing Synthetic Effluents. Bioengineering (Basel) 2023; 10:bioengineering10040398. [PMID: 37106585 PMCID: PMC10136145 DOI: 10.3390/bioengineering10040398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Yeast Saccharomyces cerevisiae may be regarded as a cost-effective and environmentally friendly biosorbent for complex effluent treatment. The effect of pH, contact time, temperature, and silver concentration on metal removal from silver-containing synthetic effluents using Saccharomyces cerevisiae was examined. The biosorbent before and after biosorption process was analysed using Fourier-transform infrared spectroscopy, scanning electron microscopy, and neutron activation analysis. Maximum removal of silver ions, which constituted 94–99%, was attained at the pH 3.0, contact time 60 min, and temperature 20 °C. High removal of copper, zinc, and nickel ions (63–100%) was obtained at pH 3.0–6.0. The equilibrium results were described using Langmuir and Freundlich isotherm, while pseudo-first-order and pseudo-second-order models were applied to explain the kinetics of the biosorption. The Langmuir isotherm model and the pseudo-second-order model fitted better experimental data with maximum adsorption capacity in the range of 43.6–108 mg/g. The negative Gibbs energy values pointed at the feasibility and spontaneous character of the biosorption process. The possible mechanisms of metal ions removal were discussed. Saccharomyces cerevisiae have all necessary characteristics to be applied to the development of the technology of silver-containing effluents treatment.
Collapse
|