1
|
Rocher EE, Luly KM, Tzeng SY, Sunshine JC, Green JJ. Efficient Polymeric Nanoparticle Gene Delivery Enabled Via Tri- and Tetrafunctional Branching. Biomacromolecules 2024; 25:7260-7273. [PMID: 39466232 DOI: 10.1021/acs.biomac.4c00954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Poly(β-amino ester) (PBAE) nanoparticles (NPs) show great promise for nonviral gene delivery. Recent studies suggest branched PBAEs (BPBAEs) offer advantages over linear counterparts, but the effect of polymer structure has not been well investigated across many chemical constituents. Here, a library of BPBAEs was synthesized with tri- and tetrafunctional branching. These polymers self-assemble with DNA to form highly cationic, monodisperse NPs with notably small size (∼50 nm). Optimal transfection occurred with polymer structures that featured moderate PBAE branching, enabling complete DNA encapsulation, rapid NP uptake, and robust expression at low DNA doses and polymer amounts. Optimized NPs enabled efficient DNA delivery to diverse cell types in vitro while maintaining high cellular viability, demonstrating significant improvements over a well-performing linear PBAE counterpart. BPBAEs also facilitated efficient mRNA and siRNA delivery, highlighting the versatility of these structures and demonstrating the broad utility of BPBAE NPs as vectors for nucleic acid delivery.
Collapse
|
2
|
Zhang S, Fang H, Tian H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024; 25:7015-7057. [PMID: 39420482 DOI: 10.1021/acs.biomac.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biomedical polymers play a key role in preventing, diagnosing, and treating diseases, showcasing a wide range of applications. Their unique advantages, such as rich source, good biocompatibility, and excellent modifiability, make them ideal biomaterials for drug delivery, biomedical imaging, and tissue engineering. However, conventional biomedical polymers suffer from poor degradation in vivo, increasing the risks of bioaccumulation and potential toxicity. To address these issues, degradable biomedical polymers can serve as an alternative strategy in biomedicine. Degradable biomedical polymers can efficiently relieve bioaccumulation in vivo and effectively reduce patient burden in disease management. This review comprehensively introduces the classification and properties of biomedical polymers and the recent research progress of degradable biomedical polymers in various diseases. Through an in-depth analysis of their classification, properties, and applications, we aim to provide strong guidance for promoting basic research and clinical translation of degradable biomedical polymers.
Collapse
Affiliation(s)
- Siting Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
3
|
Al Hoque A, Kannaboina P, Abraham Y, Mehedi M, Sibi MP, Quadir M. Furan-rich, biobased transfection agents as potential oligomeric candidates for intracellular plasmid DNA delivery. RSC Adv 2024; 14:32637-32647. [PMID: 39411251 PMCID: PMC11476585 DOI: 10.1039/d4ra05978f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Biobased, DNA delivery vectors have been synthesized with a core motif composed of 2,5-bishydroxymethylfuran (BHMF) readily available from an important biomass feedstock 5-hydroxymethyl furfural (HMF). To generate the product, BHMF was first converted to 2,5-furan bishydroxymethyl diacrylate (2,5-FDA), which was later conjugated with different types of secondary amines. Rich in tertiary nitrogen, these oligomeric FDA-amino esters demonstrated stable electrostatic interactions with negatively charged plasmid DNA in an aqueous environment. We evaluated synthetic routes toward these plasmid DNA-binding amino esters (pFASTs), identified their nanoscale features, and attempted to establish their structure-property relationship in the context of the DNA delivery. Our preliminary studies show that the pFASTs formed stable complexes with the plasmid DNA. Dynamic light scattering indicated that the DNA polyplexes of pFASTs have hydrodynamic diameters within the size range of 100-150 nm with a surface charge (ζ-potential) ranging from -10 to +33 mV, depending on pFAST type. These oligomeric amino esters rich in furan motif were also found to successfully transfect the GFP-expressing plasmid DNA intracellularly. Collectively, this study establishes a new route to produce DNA transfection agents from sustainable resources that can be used for transferring genetic materials for humans, veterinary, and agrochemical purposes.
Collapse
Affiliation(s)
- Ashique Al Hoque
- Department of Coatings and Polymeric Materials, North Dakota State University Fargo ND 58108 USA +1-701-231-6283
- Department of Pharmaceutical Technology, Jadavpur University Kolkata India
| | - Prakash Kannaboina
- Department of Chemistry Biochemistry, North Dakota State University Fargo ND 58108 USA
| | - Yeabstega Abraham
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Grand Forks ND 58202 USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota, School of Medicine & Health Grand Forks ND 58202 USA
| | - Mukund P Sibi
- Department of Chemistry Biochemistry, North Dakota State University Fargo ND 58108 USA
| | - Mohiuddin Quadir
- Department of Coatings and Polymeric Materials, North Dakota State University Fargo ND 58108 USA +1-701-231-6283
| |
Collapse
|
4
|
Li Y, Qiu B, Li Z, Wang X, He Z, Sandoval DM, Song R, Sigen A, Zhao C, Johnson M, Lyu J, Lara-Sáez I, Wang W. Backbone cationized highly branched poly(β-amino ester)s as enhanced delivery vectors in non-viral gene therapy. J Control Release 2024; 367:327-338. [PMID: 38272397 DOI: 10.1016/j.jconrel.2024.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024]
Abstract
Gene therapy holds great potential for treating Lung Cystic Fibrosis (CF) which is a fatal hereditary condition arising from mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in dysfunctional CFTR protein. However, the advancement and clinical application of CF gene therapy systems have been hindered due to the absence of a highly efficient delivery vector. In this work, we introduce a new generation of highly branched poly(β-amino ester) (HPAE) gene delivery vectors for CF treatment. Building upon the classical chemical composition of HPAE, a novel backbone cationization strategy was developed to incorporate additional functional amine groups into HPAE without altering their branching degree. By carefully adjusting the type, proportion, and backbone distribution of the added cationic groups, a series of highly effective HPAE gene delivery vectors were successfully constructed for CF disease gene therapy. In vitro assessment results showed that the backbone cationized HPAEs with randomly distributed 10% proportion of 1-(3-aminopropyl)-4-methylpiperazine (E7) amine groups exhibited superior transfection performance than their counterparts. Furthermore, the top-performed backbone cationized HPAEs, when loaded with therapeutic plasmids, successfully reinstated CFTR protein expression in the CFBE41o- disease model, achieving levels 20-23 times higher than that of normal human bronchial epithelial (HBE) cells. Their therapeutic effectiveness significantly surpassed that of the currently advanced commercial vectors, Xfect and Lipofectamine 3000.
Collapse
Affiliation(s)
- Yinghao Li
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan 232001, China; Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Bei Qiu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Zishan Li
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Xianqing Wang
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Zhonglei He
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan 232001, China
| | - Darío Manzanares Sandoval
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Rijian Song
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - A Sigen
- School of Medicine, Anhui University of Science and Technology, Huainan 232001, China
| | - Chunyu Zhao
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Melissa Johnson
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Jing Lyu
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland..
| | - Irene Lara-Sáez
- Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Wenxin Wang
- Institute of Precision Medicine (AUST-IPM), Anhui University of Science and Technology, Huainan 232001, China; Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland..
| |
Collapse
|
5
|
Li Y, He Z, Wang X, Li Z, Johnson M, Foley R, Sigen A, Lyu J, Wang W. Branch Unit Distribution Matters for Gene Delivery. ACS Macro Lett 2023; 12:780-786. [PMID: 37220212 PMCID: PMC10286303 DOI: 10.1021/acsmacrolett.3c00152] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023]
Abstract
As a key nonviral gene therapy vector, poly(β-amino ester) (PAE) has demonstrated great potential for clinical application after two decades of development. However, even after extensive efforts in structural optimizations, including screening chemical composition, molecular weight (MW), terminal groups, and topology, their DNA delivery efficiency still lags behind that of viral vectors. To break through this bottleneck, in this work, a thorough investigation of highly branched PAEs (HPAEs) was conducted to correlate their fundamental internal structure with their gene transfection performance. We show that an essential structural factor, branch unit distribution (BUD), plays an important role for HPAE transfection capability and that HPAEs with a more uniform distribution of branch units display better transfection efficacy. By optimizing BUD, a high-efficiency HPAE that surpasses well-known commercial reagents (e.g., Lipofectamine 3000 (Lipo3000), jetPEI, and Xfect) can be generated. This work opens an avenue for the structural control and molecular design of high-performance PAE gene delivery vectors.
Collapse
Affiliation(s)
- Yinghao Li
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Zhonglei He
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Xianqing Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Zishan Li
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Melissa Johnson
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Ruth Foley
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
- Branca
Bunús Ltd, NovaUCD Belfield Innovation Centre, Dublin 4, Ireland, D04 V1W8
| | - A. Sigen
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Jing Lyu
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| | - Wenxin Wang
- Charles
Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland, D04 V1W8
| |
Collapse
|
6
|
Michna A, Pomorska A, Ozcan O. Biocompatible Macroion/Growth Factor Assemblies for Medical Applications. Biomolecules 2023; 13:biom13040609. [PMID: 37189357 DOI: 10.3390/biom13040609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023] Open
Abstract
Growth factors are a class of proteins that play a role in the proliferation (the increase in the number of cells resulting from cell division) and differentiation (when a cell undergoes changes in gene expression becoming a more specific type of cell) of cells. They can have both positive (accelerating the normal healing process) and negative effects (causing cancer) on disease progression and have potential applications in gene therapy and wound healing. However, their short half-life, low stability, and susceptibility to degradation by enzymes at body temperature make them easily degradable in vivo. To improve their effectiveness and stability, growth factors require carriers for delivery that protect them from heat, pH changes, and proteolysis. These carriers should also be able to deliver the growth factors to their intended destination. This review focuses on the current scientific literature concerning the physicochemical properties (such as biocompatibility, high affinity for binding growth factors, improved bioactivity and stability of the growth factors, protection from heat, pH changes or appropriate electric charge for growth factor attachment via electrostatic interactions) of macroions, growth factors, and macroion-growth factor assemblies, as well as their potential uses in medicine (e.g., diabetic wound healing, tissue regeneration, and cancer therapy). Specific attention is given to three types of growth factors: vascular endothelial growth factors, human fibroblast growth factors, and neurotrophins, as well as selected biocompatible synthetic macroions (obtained through standard polymerization techniques) and polysaccharides (natural macroions composed of repeating monomeric units of monosaccharides). Understanding the mechanisms by which growth factors bind to potential carriers could lead to more effective delivery methods for these proteins, which are of significant interest in the diagnosis and treatment of neurodegenerative and civilization diseases, as well as in the healing of chronic wounds.
Collapse
|