1
|
Vujčić V, Marinković BP, Srećković VA, Tošić S, Jevremović D, Ignjatović LM, Rabasović MS, Šević D, Simonović N, Mason NJ. Current stage and future development of Belgrade collisional and radiative databases/datasets of importance for molecular dynamics. Phys Chem Chem Phys 2023; 25:26972-26985. [PMID: 37791414 DOI: 10.1039/d3cp03752e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Atomic and molecular (A&M) databases that contain information about species, their identities and radiative/collisional processes are essential and helpful tools that are utilized in many fields of physics, chemistry, and chem/phys-informatics. Errors or inconsistencies in the datasets are a serious issue since they can lead to inaccurate predictions and generate problems with the modeling. This demonstrates that data curation efforts around A&M databases are still indispensable and that in the curation process studious attention is required. Therefore, we herein present research activities around Belgrade "nodes" - datasets of collision/radiative cross-sections and rates needed for spectroscopy analysis in various A&M, optical and plasma physics fields. Methodologies of our research and both present and future aspects of the applications are explained. We explored the possibility to extend our nodes towards building a new database on Judd-Ofelt parameters by using machine learning in order to predict optical properties of luminescence materials. In addition, we hope that public availability of our datasets and their graphical representations will also motivate others to investigate the potential of these data.
Collapse
Affiliation(s)
- Veljko Vujčić
- Astronomical Observatory Belgrade, Volgina 7, 11000 Belgrade, Serbia.
| | | | | | - Sanja Tošić
- Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
| | - Darko Jevremović
- Astronomical Observatory Belgrade, Volgina 7, 11000 Belgrade, Serbia.
| | | | - Maja S Rabasović
- Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
| | - Dragutin Šević
- Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
| | - Nenad Simonović
- Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia
| | - Nigel J Mason
- School of Physics and Astronomy, University of Kent, Canterbury CT2 7NH, UK
| |
Collapse
|
2
|
Jurczyk J, Höflich K, Madajska K, Berger L, Brockhuis L, Edwards TEJ, Kapusta C, Szymańska IB, Utke I. Ligand Size and Carbon-Chain Length Study of Silver Carboxylates in Focused Electron-Beam-Induced Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091516. [PMID: 37177061 PMCID: PMC10180361 DOI: 10.3390/nano13091516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Gas-assisted focused electron-beam-induced deposition is a versatile tool for the direct writing of complex-shaped nanostructures with unprecedented shape fidelity and resolution. While the technique is well-established for various materials, the direct electron beam writing of silver is still in its infancy. Here, we examine and compare five different silver carboxylates, three perfluorinated: [Ag2(µ-O2CCF3)2], [Ag2(µ-O2CC2F5)2], and [Ag2(µ-O2CC3F7)2], and two containing branched substituents: [Ag2(µ-O2CCMe2Et)2] and [Ag2(µ-O2CtBu)2], as potential precursors for focused electron-beam-induced deposition. All of the compounds show high sensitivity to electron dissociation and efficient dissociation of Ag-O bonds. The as-deposited materials have silver contents from 42 at.% to above 70 at.% and are composed of silver nano-crystals with impurities of carbon and fluorine between them. Precursors with the shortest carbon-fluorine chain ligands yield the highest silver contents. In addition, the deposited silver content depends on the balance of electron-induced ligand co-deposition and ligand desorption. For all of the tested compounds, low electron flux was related to high silver content. Our findings demonstrate that silver carboxylates constitute a promising group of precursors for gas-assisted focused electron beam writing of high silver content materials.
Collapse
Affiliation(s)
- Jakub Jurczyk
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
- Faculty of Physics and Applied Computer Science, AGH University of Krakow Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Katja Höflich
- Helmholtz-Zentrum Berlin Für Materialien und Energie, Nanoscale Structures and Microscopic Analysis, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Ferdinand-Braun Institut, Leibniz-Institut für Höchstfrequenztechnik, Gustav-Kirchhoff-Str. 4, 12489 Berlin, Germany
| | - Katarzyna Madajska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Luisa Berger
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| | - Leo Brockhuis
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
- Faculty of Physics and Applied Computer Science, AGH University of Krakow Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Thomas Edward James Edwards
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| | - Czesław Kapusta
- Faculty of Physics and Applied Computer Science, AGH University of Krakow Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Iwona B Szymańska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Ivo Utke
- Laboratory for Mechanics of Materials and Nanostructures, Empa-Swiss Federal Laboratories for Materials Science and Technology, Feuerwerkerstrasse 39, 3602 Thun, Switzerland
| |
Collapse
|