1
|
Shi T, Zhang J, Gao F, Cai D, Zhang Y. A sharp and selective fluorescence paper-based sensor based on inner filter effect for ratiometric detection of four Sudan dyes in food matrix. Food Chem 2024; 444:138528. [PMID: 38310775 DOI: 10.1016/j.foodchem.2024.138528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 02/06/2024]
Abstract
The addition of Sudan dyes with carcinogenic effects to food threatens human health. Herein, a ratiometric fluorescence strip consisting of core-shell upconversion particles (NaYF4:Yb,Tm@NaYF4:Yb,Er), metal-organic frameworks and dual-template molecularly imprinted polymers was developed to selectively and sensitively detect four Sudan dyes based on inner filter effect (detection time only takes 8 min). The high adsorption capacity of metal-organic frameworks and the greater overlap between the emission of NaYF4:Yb,Tm@NaYF4:Yb,Er and the absorbance of four Sudan dyes enable the signal responses to be more sensitive. The limits of detection in chilli powder samples are as low as 29.87 ng/g, 37.55 ng/g, 47.89 ng/g and 51.02 ng/g, with satisfactory recovery (93.32-103.4%) and minor relative standard deviations (≤4.3%). This method broadens the idea for low-cost and portable detection of multiple illegal additives in complex substrates with high selectivity and sensitivity based on one kind of fluorescent strip.
Collapse
Affiliation(s)
- Tian Shi
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510006, China; School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Jinyuan Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510006, China; School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Fuhua Gao
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510006, China; School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Da Cai
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510006, China; School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yueli Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-Sen University, Guangzhou 510006, China; School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China; School of Integrated Circuits, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Li Q, Fan P, Hao Z, Ni S, Wu Q, Li L. Fluorimetric determination of tetracycline antibiotics in animal derived foods using boron and nitrogen co-doped ceria-based nanoparticles. Mikrochim Acta 2024; 191:147. [PMID: 38374514 DOI: 10.1007/s00604-024-06214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/15/2024] [Indexed: 02/21/2024]
Abstract
An innovative synthesis of boron and nitrogen co-doped ceria-based nanoparticles (B/N-CeFNPs) with bright blue fluorescence emission is reported using the hydrothermal method. Based on the aggregation-induced emission enhancement (AIEE) effect between B/N-CeFNPs and chlortetracycline (CTC), a rapid detection method for CTC through fluorescence enhancement was developed. In addition, through the electron transfer process (ET), fluorescence resonance energy transfer (FRET) effect and static quenching between B/N-CeFNPs and oxytetracycline (OTC), a ratio fluorescence strategy for detecting OTC was generated. The fluorescence of B/N-CeFNPs at 410 nm can be effectively quenched by OTC, and new fluorescence emission appears at a wavelength of 500 nm. B/N-CeFNPs showed good linear responses with CTC and OTC in the range 0.1-1 µM and 1-40 µM, respectively. This system was used to simultaneously detect the CTC and OTC in milk and honey, realizing multi-residues detection of TCs in actual samples by using the same ceria-based fluorescence nanomaterial.
Collapse
Affiliation(s)
- Qianji Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Pengfei Fan
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Zejia Hao
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Shanhong Ni
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
| | - Qian Wu
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Lei Li
- Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, People's Republic of China.
- The Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Mir TUG, Malik AQ, Shukla S, Singh J, Kumar D. Facile Synthesis of S-doped Carbon Quantum Dots and Their Application in the Detection of Sudan I in Saffron. J Fluoresc 2024; 34:253-263. [PMID: 37195542 DOI: 10.1007/s10895-023-03264-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
This study employed citric acid as a carbon source and thiourea as a sulphur source to conduct a straightforward one-step microwave synthesis of sulphur-doped carbon quantum dots (SCQDs). For the characterization of as-synthesized SCQDs, several methods such as fluorescence spectroscopy, X-Ray photoelectron spectroscopy (XPS), X-Ray diffraction (XRD), and zeta potential analyzer were utilized. XRD and XPS spectroscopy are used to examine the chemical composition and morphological aspects. These QDs have a limited size distribution spanning up to 5.89 nm, with a maximum distribution at 7 nm, according to zeta size analyser examinations. At an excitation wavelength of 340 nm, the highest fluorescence intensity (FL intensity) of SCQDs was attained. With a detection limit of 0.77 M, the synthesized SCQDs were employed as an efficient fluorescent probe for the detection of Sudan I in saffron samples.
Collapse
Affiliation(s)
- Tahir Ul Gani Mir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Azad Qayoom Malik
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Saurabh Shukla
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - Jaskaran Singh
- Department of Forensic Science, Geeta University, Naultha, Panipat, 132145, India
| | - Deepak Kumar
- School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| |
Collapse
|