1
|
Guterman V, Alekseenko A, Belenov S, Menshikov V, Moguchikh E, Novomlinskaya I, Paperzh K, Pankov I. Exploring the Potential of Bimetallic PtPd/C Cathode Catalysts to Enhance the Performance of PEM Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1672. [PMID: 39453008 PMCID: PMC11510532 DOI: 10.3390/nano14201672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/26/2024]
Abstract
Bimetallic platinum-containing catalysts are deemed promising for electrolyzers and proton-exchange membrane fuel cells (PEMFCs). A significant number of laboratory studies and commercial offers are related to PtNi/C and PtCo/C electrocatalysts. The behavior of PtPd/C catalysts has been studied much less, although palladium itself is the metal closest to platinum in its properties. Using a series of characterization methods, this paper presents a comparative study of structural characteristics of the commercial PtPd/C catalysts containing 38% wt. of precious metals and the well-known HiSpec4000 Pt/C catalyst. The electrochemical behavior of the catalysts was studied both in a three-electrode electrochemical cell and in the membrane electrode assemblies (MEAs) of hydrogen-air PEMFCs. Both PtPd/C samples demonstrated higher values of the electrochemically active surface area, as well as greater specific and mass activity in the oxygen reduction reaction in comparison with conventional Pt/C, while not being inferior to the latter in durability. The MEA based on the best of the PtPd/C catalysts also exhibited higher performance in single tests and long-term durability testing. The results of this study conducted indicate the prospects of using bimetallic PtPd/C materials for cathode catalysts in PEMFCs.
Collapse
Affiliation(s)
- Vladimir Guterman
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Anastasia Alekseenko
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Sergey Belenov
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
- Prometheus R&D LLC, 4g/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Vladislav Menshikov
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
- Prometheus R&D LLC, 4g/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Elizaveta Moguchikh
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Irina Novomlinskaya
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
- Prometheus R&D LLC, 4g/36 Zhmaylova St., Rostov-on-Don 344091, Russia
| | - Kirill Paperzh
- Faculty of Chemistry, Southern Federal University, 7 Zorge St., Rostov-on-Don 344090, Russia; (A.A.); (S.B.); (V.M.); (E.M.); (I.N.); (K.P.)
| | - Ilya Pankov
- Research Institute of Physical Organic Chemistry, Southern Federal University, 194/2 Stachki St., Rostov-on-Don 344090, Russia;
| |
Collapse
|
2
|
Zhang W, Ma Z, Zhao X, Zhou L, Yang L, Li P. Textural effect of Pt catalyst layers with different carbon supports on internal oxygen diffusion during oxygen reduction reaction. Front Chem 2023; 11:1217565. [PMID: 37351518 PMCID: PMC10282131 DOI: 10.3389/fchem.2023.1217565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 06/24/2023] Open
Abstract
One way to address the cost issue of polymer electrolyte membrane fuel cells (PEMFCs) is to reduce the amount of platinum used in the cathode catalyst layers (CLs). The oxygen mass transfer resistance of the cathode CLs is the main bottleneck limiting the polarization performance of low Pt-loading membrane electrodes at high current densities. Pt nanoparticles, ionomers, carbon supports, and water in cathode CLs can all affect their oxygen mass transfer resistance. From the perspective of carbon supports, this paper changed the texture of CLs by adding carbon nanotubes (CNTs) or graphene oxide (GO) into carbon black (XC72) and studied its impact on the oxygen mass transfer resistance. A mathematical model was adopted to correlate total mass transfer resistance and internal diffusion efficiency factor with CL structure parameters in order to determine the dominant textural effect of a CL. The results show that adding 30%CNT or 20GO to carbon black of XC72 improved the electrocatalytic performance and mass transfer capability of the composite carbon-supported Pt catalyst layers during oxygen reduction reaction. The study further reveals that the smaller particle-sized carbon material with tiny Pt nanoparticles deposition can minimize the internal oxygen diffusion resistance. A less dense CL structure can reduce the oxygen transfer resistance through the secondary pores. The conclusion obtained can provide guidance for the rational design of optimal cathode CLs of PEMFCs.
Collapse
|
3
|
Ruiz-Villalobos D, López-Sosa L, García-Hilerio B, Calaminici P, Cruz-Martínez H. Stability and activity of PdCu clusters embedded on pyridinic N-doped graphene: a density functional theory investigation. Mol Phys 2023. [DOI: 10.1080/00268976.2023.2192826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|