1
|
Tang X, Tang R, Deng Y, Li X, Li L, Zhou Z, Li W, Yuan M, Xie R, Gong D. Electric field driven tourmaline/hematite dual mineral photocatalysis for efficient antibiotic removal. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124135. [PMID: 38734056 DOI: 10.1016/j.envpol.2024.124135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/20/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Hematite (Fe2O3) has garnered attention due to its stability, economic viability, and non-toxic nature. However, the rapid recombination of charge carriers hampers its practical application. On the other hand, tourmaline's inherent surface electric field facilitates the rapid separation of photogenerated electrons and holes. In this study, two directly mined natural minerals, tourmaline and hematite (TFO), were successfully combined. Characterization and experiments indicate that the pronounced enhancement of photocatalytic activity in Fe2O3 is attributed to the electric field effect on the surface of tourmaline. TFO successfully removes 93% of tetracycline (TC, 50 ppm) within 60 min. The reaction rate constant for TFO composite material (0.0410 min-1) is 8.5 times that of tourmaline (0.0048 min-1) and 14.1 times that of hematite (0.0029 min-1). Simultaneously, it markedly improves light absorption and charge carrier separation capabilities. Through simulations of various natural environmental factors, TFO demonstrates excellent practicality. Analyzing and detecting active species revealed the involvement of four types of active species, with ·OH radicals making the most significant contribution. The photocatalytic mechanism was proposed. Furthermore, the degradation pathway of tetracycline and the toxicity of its metabolites were investigated. This work provides additional inspirations and insights for photocatalytic materials performance enhancement and natural resources green governance environment.
Collapse
Affiliation(s)
- Xiangwei Tang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China; College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Rongdi Tang
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yaocheng Deng
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Ling Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China; College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Zhanpeng Zhou
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China; College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Wenbo Li
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China; College of Resources, Hunan Agricultural University, Changsha 410128, China
| | - Meng Yuan
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Rucheng Xie
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Daoxin Gong
- College of Environment & Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
2
|
Zhang J, Chen Y, Hou J. Advanced Photocatalytic Nanomaterials for Energy Conversion and Environmental Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2246. [PMID: 37570563 PMCID: PMC10421240 DOI: 10.3390/nano13152246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
With the rapid development of the economy and society, the problem of energy shortage and environmental pollution is receiving more and more attention [...].
Collapse
Affiliation(s)
- Junying Zhang
- School of Physics, Beihang University, Beijing 100191, China
| | - Yong Chen
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Jungang Hou
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
| |
Collapse
|
3
|
Xiao Y, Tian X, Chen Y, Xiao X, Chen T, Wang Y. Recent Advances in Carbon Nitride-Based S-scheme Photocatalysts for Solar Energy Conversion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103745. [PMID: 37241371 DOI: 10.3390/ma16103745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Energy shortages are a major challenge to the sustainable development of human society, and photocatalytic solar energy conversion is a potential way to alleviate energy problems. As a two-dimensional organic polymer semiconductor, carbon nitride is considered to be the most promising photocatalyst due to its stable properties, low cost, and suitable band structure. Unfortunately, pristine carbon nitride has low spectral utilization, easy recombination of electron holes, and insufficient hole oxidation ability. The S-scheme strategy has developed in recent years, providing a new perspective for effectively solving the above problems of carbon nitride. Therefore, this review summarizes the latest progress in enhancing the photocatalytic performance of carbon nitride via the S-scheme strategy, including the design principles, preparation methods, characterization techniques, and photocatalytic mechanisms of the carbon nitride-based S-scheme photocatalyst. In addition, the latest research progress of the S-scheme strategy based on carbon nitride in photocatalytic H2 evolution and CO2 reduction is also reviewed. Finally, some concluding remarks and perspectives on the challenges and opportunities for exploring advanced nitride-based S-scheme photocatalysts are presented. This review brings the research of carbon nitride-based S-scheme strategy to the forefront and is expected to guide the development of the next-generation carbon nitride-based S-scheme photocatalysts for efficient energy conversion.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Xu Tian
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yunhua Chen
- Department of Physics, Yunnan University, Kunming 650504, China
| | - Xuechun Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Ting Chen
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-Carbon Technologies, Yunnan University, Kunming 650504, China
| |
Collapse
|
4
|
Ali W, Li Z, Bai L, Ansar MZ, Zada A, Qu Y, Shaheen S, Jing L. Controlled Synthesis of Ag-SnO2/α-Fe2O3 Nanocomposites for Improving Visible-Light Catalytic Activities of Pollutant Degradation and CO2 Reduction. Catalysts 2023. [DOI: 10.3390/catal13040696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
The key to developing highly active α-Fe2O3-based photocatalysts is to improve the charge separation and efficiently utilize the electrons with sufficient thermodynamic energy. Herein, α-Fe2O3 nanosheets (FO) were synthesized using a metal-ion-intervened hydrothermal method and then coupled with SnO2 nanosheets (SO) to obtain SO/FO nanocomposites. Subsequently, nanosized Ag was selectively loaded on SO using the photo-deposition method to result in the ternary Ag-SO/FO nanocomposites. The optimal nanocomposite could realize the efficient aerobic degradation of 2,4-dichlorophenol as a representative organic pollutant under visible-light irradiation (>420 nm), exhibiting nearly six-fold degradation rates of that for FO. Additionally, the Ag-SO/FO photocatalyst is also applicable to the visible-light degradation of other organic pollutants and even CO2 reduction. By using steady-state surface photovoltage spectroscopy, fluorescence spectroscopy, and electrochemical methods, the photoactivity enhancement of Ag-SO/FO is principally attributed to the improved charge separation by introducing SO as an electron platform for the high-energy-level electrons of FO. Moreover, nanosized Ag on SO functions as a cocatalyst to further improve the charge separation and facilitate the catalytic reduction. This work provides a feasible design strategy for narrow-bandgap semiconductor-based photocatalysts by combining an electron platform and a cocatalyst.
Collapse
Affiliation(s)
- Wajid Ali
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Ministry of Education, Harbin 150080, China
| | - Zhijun Li
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Ministry of Education, Harbin 150080, China
| | - Linlu Bai
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Ministry of Education, Harbin 150080, China
| | - Muhammad Zaka Ansar
- National Institute of Vacuum Science and Technology, Islamabad 45400, Pakistan
| | - Amir Zada
- Department of Chemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Yang Qu
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Ministry of Education, Harbin 150080, China
| | - Shabana Shaheen
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Ministry of Education, Harbin 150080, China
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry, School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Ministry of Education, Harbin 150080, China
| |
Collapse
|
5
|
Zhang J, Gu X, Zhao Y, Zhang K, Yan Y, Qi K. Photocatalytic Hydrogen Production and Tetracycline Degradation Using ZnIn 2S 4 Quantum Dots Modified g-C 3N 4 Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020305. [PMID: 36678056 PMCID: PMC9866619 DOI: 10.3390/nano13020305] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 05/12/2023]
Abstract
In this work, ZnIn2S4/g-C3N4 (ZIS/CN) composites were synthesized by in-situ growth method, which showed excellent photocatalytic activity in the degradation of tetracycline and hydrogen production from water under visible light irradiation. ZnIn2S4 quantum dots (ZIS QDs) tightly combined with sheet g-C3N4 (CN) to accelerate the separation and transportation of photogenerated charges for enhanced photocatalytic activity. Among the prepared nanocomposites, 20%ZnIn2S4 QDs/g-C3N4 (20%ZIS/CN) delivered the highest photocatalytic activity. After 120 min of irradiation, the degradation rate of tetracycline with 20%ZIS/CN was 54.82%, 3.1 times that of CN while the rate of hydrogen production was 75.2 μmol·g-1·h-1. According to the optical and electrochemical characterization analysis, it was concluded that the excellent photocatalytic activities of the composite materials were mainly due to the following three points: enhancement in light absorption capacity, acceleration in the charge transport, and reduction in the carrier recombination rate through the formation of S-scheme heterojunction in the composite system. The high photocatalytic activity of ZIS/CN composites provides a new idea to develop highly efficient photocatalysts.
Collapse
Affiliation(s)
- Jingjing Zhang
- College of Pharmacy, Dali University, Dali 671000, China
| | - Xinyue Gu
- College of Pharmacy, Dali University, Dali 671000, China
| | - Yue Zhao
- College of Pharmacy, Dali University, Dali 671000, China
| | - Kai Zhang
- College of Biochemistry and Environmental Engineering, Baoding University, Baoding 071000, China
- College of Science and Technology, Hebei Agricultural University, Cangzhou 061100, China
- Correspondence: (K.Z.); (Y.Y.); (K.Q.)
| | - Ya Yan
- College of Pharmacy, Dali University, Dali 671000, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
- Correspondence: (K.Z.); (Y.Y.); (K.Q.)
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, China
- Correspondence: (K.Z.); (Y.Y.); (K.Q.)
| |
Collapse
|