1
|
Jacob S, Kather FS, Boddu SHS, Shah J, Nair AB. Innovations in Nanoemulsion Technology: Enhancing Drug Delivery for Oral, Parenteral, and Ophthalmic Applications. Pharmaceutics 2024; 16:1333. [PMID: 39458662 PMCID: PMC11510719 DOI: 10.3390/pharmaceutics16101333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Nanoemulsions (NEs) are submicron-sized heterogeneous biphasic liquid systems stabilized by surfactants. They are physically transparent or translucent, optically isotropic, and kinetically stable, with droplet sizes ranging from 20 to 500 nm. Their unique properties, such as high surface area, small droplet size, enhanced bioavailability, excellent physical stability, and rapid digestibility, make them ideal for encapsulating various active substances. This review focuses on recent advancements, future prospects, and challenges in the field of NEs, particularly in oral, parenteral, and ophthalmic delivery. It also discusses recent clinical trials and patents. Different types of in vitro and in vivo NE characterization techniques are summarized. High-energy and low-energy preparation methods are briefly described with diagrams. Formulation considerations and commonly used excipients for oral, ocular, and ophthalmic drug delivery are presented. The review emphasizes the need for new functional excipients to improve the permeation of large molecular weight unstable proteins, oligonucleotides, and hydrophilic drugs to advance drug delivery rapidly.
Collapse
Affiliation(s)
- Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Fathima Sheik Kather
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates;
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates;
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Jigar Shah
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad 382481, India;
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
2
|
Mışraklı M, Rizzo SA, Bordano V, Bozza A, Ferraris L, Marini E, Muntoni E, Capucchio MT, Scomparin A, Battaglia L. Concanavalin a Grafted Nanoemulsions for Nasal Delivery: Preliminary Studies with Fluorescently Labelled Formulations. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4959. [PMID: 39459664 PMCID: PMC11509158 DOI: 10.3390/ma17204959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/27/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Nasal delivery is a non-invasive strategy for effective drug delivery. Nevertheless, in order to promote drug uptake by the nasal mucosa, it is fundamental to increase its residence time in the administration site. To this aim, nano-sized drug delivery systems are widely exploited. Within this context, the commercially available nanoemulsion for parenteral nutrition is a biocompatible, safe and clinically approved vehicle for drug delivery. Furthermore, the nanodroplet surface can be modified via a well-established protocol to graft Concavalin A, a lectin capable of improving the mucosal adhesion, by binding to the α-mannose and α-glucose residues of the mucosal glycocalyx. The obtained targeted formulation is able to induce haemagglutination, as opposite to non-modified nanoemulsion. Furthermore, the ConA grafting maintains the physicochemical properties of the nanodroplets (size~230 nm, Z < -35 mV) and does not interfere with the loading of the Rose Bengal fluorescent probe. Fluorescently labelled ConA grafted nanodroplets showed enhanced permeation and accumulation in ex vivo bovine nasal mucosa. This study is a proof of concept that Concanavalin A can be used to decorate the surface of nanodroplets, acting as a permeation promoter.
Collapse
Affiliation(s)
- Merve Mışraklı
- Faculty of Pharmacy, Ege University, Erzene Street, Ankara Avenue, No 172/98, 35040 Izmir, Türkiye;
| | - Sebastiano Antonio Rizzo
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Valentina Bordano
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Luca Ferraris
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Maria Teresa Capucchio
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini, 2, 10095 Grugliasco, Italy;
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, Via Pietro Giuria 9, 10125 Turin, Italy; (S.A.R.); (V.B.); (A.B.); (L.F.); (E.M.); (E.M.)
| |
Collapse
|
3
|
Dianzani C, Bozza A, Bordano V, Cangemi L, Ferraris C, Foglietta F, Monge C, Gallicchio M, Pizzimenti S, Marini E, Muntoni E, Valsania MC, Battaglia L. Cell Membrane Fragment-Wrapped Parenteral Nanoemulsions: A New Drug Delivery Tool to Target Gliomas. Cells 2024; 13:641. [PMID: 38607080 PMCID: PMC11011487 DOI: 10.3390/cells13070641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/28/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Poor prognosis in high-grade gliomas is mainly due to fatal relapse after surgical resection in the absence of efficient chemotherapy, which is severely hampered by the blood-brain barrier. However, the leaky blood-brain-tumour barrier forms upon tumour growth and vascularization, allowing targeted nanocarrier-mediated drug delivery. The homotypic targeting ability of cell-membrane fragments obtained from cancer cells means that these fragments can be exploited to this aim. In this experimental work, injectable nanoemulsions, which have a long history of safe clinic usage, have been wrapped in glioma-cell membrane fragments via co-extrusion to give targeted, homogeneously sized, sterile formulations. These systems were then loaded with three different chemotherapeutics, in the form of hydrophobic ion pairs that can be released into the target site thanks to interactions with physiological components. The numerous assays performed in two-dimensional (2D) and three-dimensional (3D) cell models demonstrate that the proposed approach is a versatile drug-delivery platform with chemo-tactic properties towards glioma cells, with adhesive interactions between the target cell and the cell membrane fragments most likely being responsible for the effect. This approach's promising translational perspectives towards personalized nanomedicine mean that further in vivo studies are foreseen for the future.
Collapse
Affiliation(s)
- Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Valentina Bordano
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Luigi Cangemi
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Federica Foglietta
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Chiara Monge
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Margherita Gallicchio
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Turin, Corso Raffaello 30, 10124 Turin, Italy;
| | - Elisabetta Marini
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Elisabetta Muntoni
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
| | - Maria Carmen Valsania
- Department of Chemistry, University of Turin, Via Quarello 15/a, 10135 Turin, Italy;
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, 10124 Turin, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10124 Turin, Italy; (C.D.); (A.B.); (V.B.); (L.C.); (C.F.); (F.F.); (C.M.); (M.G.); (E.M.); (E.M.)
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, 10124 Turin, Italy
| |
Collapse
|
4
|
Stoppa I, Dianzani C, Clemente N, Bozza A, Bordano V, Garelli S, Cangemi L, Dianzani U, Battaglia L. Alendronate-Grafted Nanoemulsions for Bone-Targeted Vincristine Delivery: Preliminary Studies on Cell and Animal Models. Biomolecules 2024; 14:238. [PMID: 38397475 PMCID: PMC10886946 DOI: 10.3390/biom14020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Bone is a site of distant metastases, which are a common cause of morbidity and mortality with a high socio-economic impact, for many malignant tumours. In order to engineer pharmacological therapies that are suitable for this debilitating disease, this experimental work presents injectable lipid nanoemulsions, which are endowed with a long history of safe clinical usage in parenteral nutrition, their loading with vincristine and their grafting with alendronate, with a dual purpose: merging the anticancer activity of bisphosphonates and vincristine, and enhancing bone-targeted delivery. In cell studies, alendronate synergised with the anti-migration activity of vincristine, which is important as migration plays a key role in the metastatisation process. In preliminary animal studies, carried out thanks to IVIS technology, alendronate conjugation enhanced the bone targeting of fluorescently labelled nanoemulsions. These encouraging results will drive further studies on suitable animal models of the disease.
Collapse
Affiliation(s)
- Ian Stoppa
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (I.S.); (N.C.); (U.D.)
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Nausicaa Clemente
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (I.S.); (N.C.); (U.D.)
| | - Annalisa Bozza
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Valentina Bordano
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Sara Garelli
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Luigi Cangemi
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
| | - Umberto Dianzani
- Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Eastern Piedmont (UPO), via Solaroli 17, 28100 Novara, Italy; (I.S.); (N.C.); (U.D.)
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy; (C.D.); (A.B.); (V.B.); (S.G.); (L.C.)
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Turin, 10124 Turin, Italy
| |
Collapse
|
5
|
Foglietta F, Bozza A, Ferraris C, Cangemi L, Bordano V, Serpe L, Martina K, Lazzarato L, Pizzimenti S, Grattarola M, Cucci MA, Dianzani C, Battaglia L. Surface Functionalised Parenteral Nanoemulsions for Active and Homotypic Targeting to Melanoma. Pharmaceutics 2023; 15:pharmaceutics15051358. [PMID: 37242600 DOI: 10.3390/pharmaceutics15051358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Despite recent progressions in cancer genomic and immunotherapies, advanced melanoma still represents a life threat, pushing to optimise new targeted nanotechnology approaches for specific drug delivery to the tumour. To this aim, owing to their biocompatibility and favourable technological features, injectable lipid nanoemulsions were functionalised with proteins owing to two alternative approaches: transferrin was chemically grafted for active targeting, while cancer cell membrane fragments wrapping was used for homotypic targeting. In both cases, protein functionalisation was successfully achieved. Targeting efficiency was preliminarily evaluated using flow cytometry internalisation studies in two-dimensional cellular models, after fluorescence labelling of formulations with 6-coumarin. The uptake of cell-membrane-fragment-wrapped nanoemulsions was higher compared to uncoated nanoemulsions. Instead, the effect of transferrin grafting was less evident in serum-enriched medium, since such ligand probably undergoes competition with the endogenous protein. Moreover, a more pronounced internalisation was achieved when a pegylated heterodimer was employed for conjugation (p < 0.05).
Collapse
Affiliation(s)
- Federica Foglietta
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Annalisa Bozza
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Chiara Ferraris
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luigi Cangemi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Valentina Bordano
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Loredana Serpe
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Katia Martina
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Loretta Lazzarato
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Margherita Grattarola
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Marie Angele Cucci
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10124 Torino, Italy
- Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, Università degli Studi di Torino, 10125 Torino, Italy
| |
Collapse
|
6
|
Boggio E, Gigliotti CL, Stoppa I, Pantham D, Sacchetti S, Rolla R, Grattarola M, Monge C, Pizzimenti S, Dianzani U, Dianzani C, Battaglia L. Exploiting Nanomedicine for Cancer Polychemotherapy: Recent Advances and Clinical Applications. Pharmaceutics 2023; 15:937. [PMID: 36986798 PMCID: PMC10057931 DOI: 10.3390/pharmaceutics15030937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The most important limitations of chemotherapeutic agents are severe side effects and the development of multi-drug resistance. Recently, the clinical successes achieved with immunotherapy have revolutionized the treatment of several advanced-stage malignancies, but most patients do not respond and many of them develop immune-related adverse events. Loading synergistic combinations of different anti-tumor drugs in nanocarriers may enhance their efficacy and reduce life-threatening toxicities. Thereafter, nanomedicines may synergize with pharmacological, immunological, and physical combined treatments, and should be increasingly integrated in multimodal combination therapy regimens. The goal of this manuscript is to provide better understanding and key considerations for developing new combined nanomedicines and nanotheranostics. We will clarify the potential of combined nanomedicine strategies that are designed to target different steps of the cancer growth as well as its microenvironment and immunity interactions. Moreover, we will describe relevant experiments in animal models and discuss issues raised by translation in the human setting.
Collapse
Affiliation(s)
- Elena Boggio
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Casimiro Luca Gigliotti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Ian Stoppa
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Deepika Pantham
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Sara Sacchetti
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Roberta Rolla
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Margherita Grattarola
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Chiara Monge
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Stefania Pizzimenti
- Dipartimento di Scienze Cliniche e Biologiche, Università degli Studi di Torino, Corso Raffaello 30, 10125 Torino, Italy
| | - Umberto Dianzani
- Dipartimento di Scienze della Salute, Università del Piemonte Orientale, 28100 Novara, Italy
- Ospedale Universitario Maggiore della Carità, 28100 Novara, Italy
| | - Chiara Dianzani
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
| | - Luigi Battaglia
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy
- Centro Interdipartimentale Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, Università degli Studi di Torino, 10124 Torino, Italy
| |
Collapse
|