1
|
Tudor M, Popescu RC, Irimescu IN, Rzyanina A, Tarba N, Dinischiotu A, Craciun L, Esanu TR, Vasile E, Hotnog AT, Radu M, Mytsin G, Mihailescu M, Savu DI. Enhancing Proton Radiosensitivity of Chondrosarcoma Using Nanoparticle-Based Drug Delivery Approaches: A Comparative Study of High- and Low-Energy Protons. Int J Mol Sci 2024; 25:11481. [PMID: 39519034 PMCID: PMC11546389 DOI: 10.3390/ijms252111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
To overcome chondrosarcoma's (CHS) high chemo- and radioresistance, we used polyethylene glycol-encapsulated iron oxide nanoparticles (IONPs) for the controlled delivery of the chemotherapeutic doxorubicin (IONPDOX) to amplify the cytotoxicity of proton radiation therapy. Human 2D CHS SW1353 cells were treated with protons (linear energy transfer (LET): 1.6 and 12.6 keV/µm) with and without IONPDOX. Cell survival was assayed using a clonogenic test, and genotoxicity was tested through the formation of micronuclei (MN) and γH2AX foci, respectively. Morphology together with spectral fingerprints of nuclei were measured using enhanced dark-field microscopy (EDFM) assembled with a hyperspectral imaging (HI) module and an axial scanning fluorescence module, as well as scanning electron microscopy (SEM) coupled with energy-dispersive X-Ray spectroscopy (EDX). Cell survival was also determined in 3D SW3153 spheroids following treatment with low-LET protons with/without the IONPDOX compound. IONPDOX increased radiosensitivity following proton irradiation at both LETs in correlation with DNA damage expressed as MN or γH2AX. The IONPDOX-low-LET proton combination caused a more lethal effect compared to IONPDOX-high-LET protons. CHS cell biological alterations were reflected by the modifications in the hyperspectral images and spectral profiles, emphasizing new possible spectroscopic markers of cancer therapy effects. Our findings show that the proposed treatment combination has the potential to improve the management of CHS.
Collapse
Affiliation(s)
- Mihaela Tudor
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania; (M.T.); (R.C.P.); (M.R.)
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| | - Roxana Cristina Popescu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania; (M.T.); (R.C.P.); (M.R.)
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| | - Ionela N. Irimescu
- Applied Sciences Doctoral School, National University for Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Ann Rzyanina
- Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 6 Joliot-Curie Street, 141980 Dubna, Moscow Region, Russia; (A.R.); (G.M.)
| | - Nicolae Tarba
- Doctoral School of Computer Sciences, National University for Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Anca Dinischiotu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| | - Liviu Craciun
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania; (L.C.); (T.R.E.)
| | - Tiberiu Relu Esanu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania; (L.C.); (T.R.E.)
| | - Eugeniu Vasile
- Faculty of Applied Physics, National University for Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Andrei Theodor Hotnog
- Applied Nuclear Physics Department, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania;
| | - Mihai Radu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania; (M.T.); (R.C.P.); (M.R.)
| | - Gennady Mytsin
- Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 6 Joliot-Curie Street, 141980 Dubna, Moscow Region, Russia; (A.R.); (G.M.)
| | - Mona Mihailescu
- Holographic Imaging and Processing Laboratory, Physics Department, National University for Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania;
- Centre for Research in Fundamental Sciences Applied in Engineering, National University for Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania; (M.T.); (R.C.P.); (M.R.)
| |
Collapse
|
2
|
Bemidinezhad A, Radmehr S, Moosaei N, Efati Z, Kesharwani P, Sahebkar A. Enhancing radiotherapy for melanoma: the promise of high-Z metal nanoparticles in radiosensitization. Nanomedicine (Lond) 2024; 19:2391-2411. [PMID: 39382020 PMCID: PMC11492696 DOI: 10.1080/17435889.2024.2403325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Melanoma is a type of skin cancer that can be challenging to treat, especially in advanced stages. Radiotherapy is one of the main treatment modalities for melanoma, but its efficacy can be limited due to the radioresistance of melanoma cells. Recently, there has been growing interest in using high-Z metal nanoparticles (NPs) to enhance the effectiveness of radiotherapy for melanoma. This review provides an overview of the current state of radiotherapy for melanoma and discusses the physical and biological mechanisms of radiosensitization through high-Z metal NPs. Additionally, it summarizes the latest research on using high-Z metal NPs to sensitize melanoma cells to radiation, both in vitro and in vivo. By examining the available evidence, this review aims to shed light on the potential of high-Z metal NPs in improving radiotherapy outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Negin Moosaei
- Materials Science & Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Zohreh Efati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi110062, India
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
3
|
Cao Y, Zhou X, Nie Q, Zhang J. Inhibition of the thioredoxin system for radiosensitization therapy of cancer. Eur J Med Chem 2024; 268:116218. [PMID: 38387331 DOI: 10.1016/j.ejmech.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.
Collapse
Affiliation(s)
- Yisheng Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Shen Y, Gwak H, Han B. Advanced manufacturing of nanoparticle formulations of drugs and biologics using microfluidics. Analyst 2024; 149:614-637. [PMID: 38083968 PMCID: PMC10842755 DOI: 10.1039/d3an01739g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Numerous innovative nanoparticle formulations of drugs and biologics, named nano-formulations, have been developed in the last two decades. However, methods for their scaled-up production are still lagging, as the amount needed for large animal tests and clinical trials is typically orders of magnitude larger. This manufacturing challenge poses a critical barrier to successfully translating various nano-formulations. This review focuses on how microfluidics technology has become a powerful tool to overcome this challenge by synthesizing various nano-formulations with improved particle properties and product purity in large quantities. This microfluidic-based manufacturing is enabled by microfluidic mixing, which is capable of the precise and continuous control of the synthesis of nano-formulations. We further discuss the specific applications of hydrodynamic flow focusing, a staggered herringbone micromixer, a T-junction mixer, a micro-droplet generator, and a glass capillary on various types of nano-formulations of polymeric, lipid, inorganic, and nanocrystals. Various separation and purification microfluidic methods to enhance the product purity are reviewed, including acoustofluidics, hydrodynamics, and dielectrophoresis. We further discuss the challenges of microfluidics being used by broader research and industrial communities. We also provide future outlooks of its enormous potential as a decentralized approach for manufacturing nano-formulations.
Collapse
Affiliation(s)
- Yingnan Shen
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Hogyeong Gwak
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA.
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| |
Collapse
|
5
|
Tudor M, Popescu RC, Negoita RD, Gilbert A, Ilisanu MA, Temelie M, Dinischiotu A, Chevalier F, Mihailescu M, Savu DI. In vitro hyperspectral biomarkers of human chondrosarcoma cells in nanoparticle-mediated radiosensitization using carbon ions. Sci Rep 2023; 13:14878. [PMID: 37689817 PMCID: PMC10492786 DOI: 10.1038/s41598-023-41991-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
New therapeutic approaches are needed for the management of the highly chemo- and radioresistant chondrosarcoma (CHS). In this work, we used polyethylene glycol-encapsulated iron oxide nanoparticles for the intracellular delivery of the chemotherapeutic doxorubicin (IONPDOX) to augment the cytotoxic effects of carbon ions in comparison to photon radiation therapy. The in vitro biological effects were investigated in SW1353 chondrosarcoma cells focusing on the following parameters: cell survival using clonogenic test, detection of micronuclei (MN) by cytokinesis blocked micronucleus assay and morphology together with spectral fingerprints of nuclei using enhanced dark-field microscopy (EDFM) assembled with a hyperspectral imaging (HI) module. The combination of IONPDOX with ion carbon or photon irradiation increased the lethal effects of irradiation alone in correlation with the induction of MN. Alterations in the hyperspectral images and spectral profiles of nuclei reflected the CHS cell biological modifications following the treatments, highlighting possible new spectroscopic markers of cancer therapy effects. These outcomes showed that the proposed combined treatment is promising in improving CHS radiotherapy.
Collapse
Affiliation(s)
- Mihaela Tudor
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125, Magurele, Romania
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania
| | - Roxana Cristina Popescu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125, Magurele, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, Gheorghe Polizu Street, 1-7, 011061, Bucharest, Romania
| | - Raluca D Negoita
- Applied Sciences Doctoral School, Politehnica University Bucharest, Bucharest, Romania
| | - Antoine Gilbert
- UMR6252 CIMAP, Team Applications in Radiobiology with Accelerated Ions, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000, Caen, France
| | - Mihaela A Ilisanu
- Doctoral School of Computer Sciences, Politehnica University Bucharest, Bucharest, Romania
| | - Mihaela Temelie
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125, Magurele, Romania
| | - Anca Dinischiotu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095, Bucharest, Romania.
| | - François Chevalier
- UMR6252 CIMAP, Team Applications in Radiobiology with Accelerated Ions, CEA-CNRS-ENSICAEN-Université de Caen Normandie, 14000, Caen, France
| | - Mona Mihailescu
- Holographic Imaging and Processing Laboratory, Physics Department, Politehnica University Bucharest, Bucharest, Romania
- Centre for Research in Fundamental Sciences Applied in Engineering, Politehnica University Bucharest, Bucharest, Romania
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125, Magurele, Romania.
| |
Collapse
|
6
|
Penninckx S, Martinive P, Mirjolet C. Radiation-activated nanoparticles: Which combination to optimize radiosensitization? Cancer Radiother 2023; 27:494-498. [PMID: 37544778 DOI: 10.1016/j.canrad.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Radiotherapy plays a crucial role in the treatment of various cancers. With the ongoing technological advancements in radiotherapy equipment, allowing for increasingly precise targeting of tumours, there are numerous strategies being explored to enhance its effectiveness by combining it with other therapies. Among these, metal nanoparticles seem to have a promising future driven by their ability to locally amplify the dose deposited by ionizing radiation, and to radiosensitize cells by modifying their oxidative status. Recent advancements in understanding the mechanisms of action of these nanoparticles have provided valuable insights for the development of new therapeutic combinations. Among these, the combination with immunotherapies would make it possible to benefit both from the amplified local effect of radiotherapy by nanoparticles and to induce a better antitumour immune response. In this article, we review shortly the existing literature on ongoing combinations and suggest potential novel therapies associated with the combination of radiotherapy and nanoparticles.
Collapse
Affiliation(s)
- S Penninckx
- Medical Physics Department, institut Jules-Bordet, Université libre de Bruxelles, 1070 Brussels, Belgium; Radiotherapy Department, institut Jules-Bordet, Université libre de Bruxelles, 1070 Brussels, Belgium.
| | - P Martinive
- Radiotherapy Department, institut Jules-Bordet, Université libre de Bruxelles, 1070 Brussels, Belgium
| | - C Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, centre Georges-François-Leclerc, Unicancer, Dijon, France; TiReCs team, Inserm UMR 1231, Dijon, France
| |
Collapse
|
7
|
Miao W, Liu Y, Tang J, Chen T, Yang F. A Moexitecan Magnetic Liposomal Strategy for Ferroptosis-Enhanced Chemotherapy. Pharmaceutics 2023; 15:2012. [PMID: 37514198 PMCID: PMC10386037 DOI: 10.3390/pharmaceutics15072012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Moexitecan (Mex) is a novel camptothecin derivative that retains the potent antitumor properties of camptothecin drugs and has improved hydrophilicity to enhance biocompatibility in vitro. However, single-drug therapy still has limitations. In this study, magnetic liposomes loaded with both moexitecan and superparamagnetic iron oxide nanoparticles (SPIO) have been fabricated by a film hydration and filtration method, which is abbreviated as Mex@MLipo. By using liposomes as drug carriers, Mex can be delivered specifically to the target site, resulting in improved therapeutic efficacy and reduced toxicity. Morphology characterization results show that Mex@MLipo has a mean diameter of 180-200 nm with a round morphology. The loading efficiencies of Mex and SPIO are 65.86% and 76.86%, respectively. Cell toxicity, in vitro cell uptake, and in vivo fluorescence imaging experiments showed that Mex@MLipo was the most effective in killing HT-29 cells compared with HepG-2 and PC-3 cells, due to its ability to combine chemotherapy and induce ferroptosis, resulting in a strong anti-tumor effect. Thus, this study developed an innovative nanoscale drug delivery system that paves the way for clinical applications of moexitecan.
Collapse
Affiliation(s)
- Weiling Miao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yang Liu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jian Tang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tiandong Chen
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Fang Yang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
8
|
Penninckx S, Thariat J, Mirjolet C. Radiation therapy-activated nanoparticle and immunotherapy: The next milestone in oncology? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 378:157-200. [PMID: 37438017 DOI: 10.1016/bs.ircmb.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Radiotherapy (RT) is a fundamental treatment at the locoregional or oligometastatic stages of cancer. In various tumors, RT effects may be optimized using synergistic combinations that enhance tumor response. Innovative strategies have been designed that explore the radiation mechanisms, at the physical, chemical and biological levels, to propose precision RT approaches. They consist in combining RT with immunotherapy to revert radiation immunosuppressive effects or to enhance radiation-induced immune defenses against the tumor to favor immunogenic cell death. Radiotherapy-activated nanoparticles are another innovation. By increasing radiation response in situ, nanoparticles improve tumor control locally, and can trigger systemic immune reactions that may be exploited to improve the systemic efficacy of RT. Strong clinical evidence of improved outcomes is now available for combinations of RT and immunotherapy on one hand and RT and nanoparticles on the other hand. The triple combination of RT, immunotherapy and nanoparticles is promising in terms of tolerance, local and systemic anti-tumor control. Yet, significant challenges remain to unravel the complexity of the multiscale mechanisms underlying response to this combination and their associated parameters. Such parameters include patient characteristics, tumor bulk and histology, radiation technique, energy, dose, fractionation, immunotherapy targets and predictive biomarkers, nanoparticle type, size, delivery (intratumoral/intravenous), distribution. The temporal combination is another critical parameter. The mechanisms of response of the combinatorial approaches are reviewed, with a focus on underlying mechanisms based on preclinical, translational and clinical studies. Opportunities for translation of current understanding into precision RT trials combined with immunotherapy and nanoparticles are also discussed.
Collapse
Affiliation(s)
- Sébastien Penninckx
- Medical Physics Department, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium.
| | - Juliette Thariat
- Laboratoire de physique Corpusculaire IN2P3/ENSICAEN/CNRS UMR 6534, Normandie Université Centre François Baclesse, Caen, France
| | - Céline Mirjolet
- Radiation Oncology Department, Preclinical Radiation Therapy and Radiobiology Unit, Centre Georges-François Leclerc, Unicancer, Dijon, France; TIReCS Team, UMR INSERM 1231, Dijon, France
| |
Collapse
|