1
|
Ahsan A, Lakhani A, Ashraf MU, Yar M, Sarfaraz S, Ayub K. CO 2 capturing by self-assembled belt[14]pyridine encapsulated ionic liquid complexes: a DFT study. RSC Adv 2024; 14:31837-31849. [PMID: 39380651 PMCID: PMC11459277 DOI: 10.1039/d4ra03394a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
In the current study, CO2 capturing ability of encapsulated ionic liquids (ENILs) i.e., tetramethylammonium chloride (TMACl), 1,3-dimethylimidazolium chloride (MIMCl), and methylpyridinium hexafluorophosphate (MPHP) encapsulated in self assembled belt[14]pyridine (BP) has been studied. The results show that strong van der Waals forces are involved in capturing of CO2 by these encapsulated ionic liquids. Strong attractive forces arise from synergistic effect of ionic liquid (encapsulated) and atoms of belt. The interaction energies (E int) ranging from -12.54 to -18.64 kcal mol-1 reveal the capturing of CO2 by these systems as thermodynamically feasible process. The type and strength of interactions between CO2 and encapsulated ionic liquids is studied through QTAIM and NCI analyses. NCI analysis clearly shows that capturing of CO2 is assisted by van der Waals forces between CO2 and encapsulated ionic liquid complexes. The same feature is confirmed through QTAIM analysis as well. Natural bond orbital (NBO) analysis' results show the charge transfer between the fragments (encapsulated ionic liquids and CO2) which is validated further through electron density differences (EDD) analysis. Overall, transfer of charge towards CO2 from encapsulated ionic liquids is proved through the charge accumulation over CO2 (i.e., blue isosurfaces on CO2 molecules) through EDD analysis. The FMO analyses show the decrease in H-L gaps of encapsulated ionic liquids after CO2 capturing. The successful charge transfer and reduction in H-L gap indicate better interaction in the designed systems thus revealing these systems as a potential candidates for CO2 capturing. Overall, the best results for CO2 capture i.e., the highest interaction energy, the lowest H-L gap, and the strongest forces of interactions are shown by methylpyridinium hexafluorophosphate (MPHP) encapsulated belt[14]pyridine (BP-MPHP) system. This is due to the larger anion of methylpyridinium hexafluorophosphate as compared to the other two encapsulated ionic liquids with Cl- as anion which enables it to develop strong interactions with CO2. The designed belt[14]pyridine based encapsulated ionic liquid systems are promising prospects with better CO2 capture performance and represent a new entrant in the CO2 capturing systems.
Collapse
Affiliation(s)
- Annum Ahsan
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| | - Ahmed Lakhani
- Department of Biomedical and Health Sciences, Calumet College of St. Joseph Whiting Indiana 46394 USA
| | - Muhammad Umair Ashraf
- Institute for Applied Physics, Department of Physics, University of Science and Technology Beijing Beijing 100083 China
| | - Muhammad Yar
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
- Department of Chemistry, Cholistan University of Veterinary and Animal Sciences Bahawalpur Punjab 63100 Pakistan
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| |
Collapse
|
2
|
Wang X, Liu J, Li R, Yu J, Liu Q, Zhu J, Liu P. Hierarchical Nanoheterostructure of HFIP-Grafted α-Fe 2O 3@Multiwall Carbon Nanotubes as High-Performance Chemiresistive Sensors for Nerve Agents. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:305. [PMID: 38334576 PMCID: PMC10857011 DOI: 10.3390/nano14030305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
New and efficient sensors of nerve agents are urgently demanded to prevent them from causing mass casualties in war or terrorist attacks. So, in this work, a novel hierarchical nanoheterostructure was synthesized via the direct growth of α-Fe2O3 nanorods onto multiwall carbon nanotube (MWCNT) backbones. Then, the composites were functionalized with hexafluoroisopropanol (HFIP) and successfully applied to detect dimethyl methylphosphonate (DMMP)-sarin simulant gas. The observations show that the HFIP-α-Fe2O3@MWCNT hybrids exhibit outstanding DMMP-sensing performance, including low operating temperature (220 °C), high response (6.0 to 0.1 ppm DMMP), short response/recovery time (8.7 s/11.9 s), as well as low detection limit (63.92 ppb). The analysis of the sensing mechanism demonstrates that the perfect sensing performance is mainly due to the synergistic effect of the chemical interaction of DMMP with the heterostructure and the physical adsorption of DMMP by hydrogen bonds with HFIP that are grafted on the α-Fe2O3@MWCNTs composite. The huge specific surface area of HFIP-α-Fe2O3@MWCNTs composite is also one of the reasons for this enhanced performance. This work not only offers a promising and effective method for synthesizing sensitive materials for high-performance gas sensors but also provides insight into the sensing mechanism of DMMP.
Collapse
Affiliation(s)
| | - Jingyuan Liu
- Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; (X.W.); (R.L.); (J.Y.); (Q.L.); (J.Z.)
| | | | | | | | | | - Peili Liu
- Key Laboratory of Superlight Material and Surface Technology, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China; (X.W.); (R.L.); (J.Y.); (Q.L.); (J.Z.)
| |
Collapse
|
3
|
Aetizaz M, Ullah F, Sarfaraz S, Mahmood T, Ayub K. Robust and facile detection of formaldehyde through transition metals doped olympicene sensors: a step forward DFT investigation. RSC Adv 2023; 13:29231-29241. [PMID: 37809028 PMCID: PMC10551803 DOI: 10.1039/d3ra04019d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Formaldehyde, a volatile organic compound (VOC) released by building and decoration materials, has many applications in the chemical feedstock industry. Excessive release of formaldehyde can cause serious health issues, such as chest tightness, cough, cancer, and tissue damage. Therefore, detection of formaldehyde is required. Herein transition metal (Fe, Ni, and Pd) doped olympicene is evaluated as a gas sensor for the detection of formaldehyde. The performance of the designed electrochemical sensor is evaluated through interaction energy, natural bond orbital (NBO) non-covalent interaction (NCI), electron density differences (EDD), electrostatic potential (ESP), quantum theory of atom in molecule (QTAIM), frontier molecular orbital (FMO), and density of states (DOS) analysis. Interaction energies obtained at B3LYP-D3/def-2 TZVP level of theory shows that formaldehyde is physiosorbed over the surface of transition metal doped olympicene. The trend for interaction energy is OLY(Ni)/HCHO > OLY(Fe)/HCHO > OLY(Pd)/HCHO. The presence of non-covalent interactions is confirmed by the QTAIM and NCI analyses, while transfer of charges is confirmed by natural bond orbital analysis. The reduced density gradient (RDG) approach using noncovalent interaction (NCI) analysis demonstrates that electrostatic hydrogen bonding interactions prevail in the complexes. Recovery time is calculated to check the reusability of the sensor. This study may provide a deep insight for the designing of highly efficient electrochemical sensor against formaldehyde with transition metals doped on olympicene.
Collapse
Affiliation(s)
- Muhammad Aetizaz
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| | - Faizan Ullah
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| | - Tariq Mahmood
- Department of Chemistry, College of Science, University of Bahrain 1051 Bahrain
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Abbottabad Campus KPK 22060 Pakistan +92-992-383591
| |
Collapse
|
4
|
Sarfaraz S, Yar M, Hussain A, Lakhani A, Gulzar A, Ans M, Rashid U, Hussain M, Muhammad S, Bayach I, Sheikh NS, Ayub K. Metallofullerenes as Robust Single-Atom Catalysts for Adsorption and Dissociation of Hydrogen Molecules: A Density Functional Study. ACS OMEGA 2023; 8:36493-36505. [PMID: 37810689 PMCID: PMC10552115 DOI: 10.1021/acsomega.3c05477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
Hydrogen is currently considered as the best alternative for traditional fuels due to its sustainable and ecofriendly nature. Additionally, hydrogen dissociation is a critical step in almost all hydrogenation reactions, which is crucial in industrial chemical production. A cost-effective and efficient catalyst with favorable activity for this step is highly desirable. Herein, transition-metal-doped fullerene (TM@C60) complexes are designed and investigated as single-atom catalysts for the hydrogen splitting process. Interaction energy analysis (Eint) is also carried out to demonstrate the stability of designed TM@C60 metallofullerenes, which reveals that all the designed complexes have higher thermodynamic stability. Furthermore, among all the studied metallofullerenes, the best catalytic efficiency for hydrogen dissociation is seen for the Sc@C60 catalyst Ea = 0.13 eV followed by the V@C60 catalyst Ea = 0.19 eV. The hydrogen activation and dissociation processes over TM@C60 metallofullerenes is further elaborated by analyzing charge transfer via the natural bond orbital and electron density difference analyses. Additionally, quantum theory of atoms in molecule analysis is carried out to investigate the nature of interatomic interactions between hydrogen molecules and TMs@C60 metallofullerenes. Overall, results of the current study declare that the Sc@C60 catalyst can act as a low cost, highly efficient, and noble metal-free single-atom catalyst to efficiently catalyze hydrogen dissociation reaction.
Collapse
Affiliation(s)
- Sehrish Sarfaraz
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Muhammad Yar
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ajaz Hussain
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Ahmed Lakhani
- Department
of Biomedical and Health Sciences, Calumet
College of St. Joseph, 2400, New York Avenue, Whiting, Indiana 46394, United States
| | - Adnan Gulzar
- Center
of Theoretical Chemistry, Ruhr-Universitat
Bochum, Bochum 44780, Germany
| | - Muhammad Ans
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad 38000, Pakistan
| | - Umer Rashid
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Masroor Hussain
- Department
of Data Science, Ghulam Ishaq Khan Institute
of Engineering Sciences and Technology, Topi 23460, KPK, Pakistan
| | - Shabbir Muhammad
- Department
of Physics, College of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Imene Bayach
- Department
of Chemistry, College of Science, King Faisal
University, Al-Ahsa 31982, Saudi Arabia
| | - Nadeem S. Sheikh
- Chemical
Sciences, Faculty of Science, Universiti
Brunei Darussalam, Jalan Tungku Link, Gadong BE1410, Brunei Darussalam
| | - Khurshid Ayub
- Department
of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| |
Collapse
|
5
|
Sun Z, Wang Z, Yang X, An K, Qu Z, Tang Z, Lai S, He M, Yang L, Zhou B, Zhao H. Synergistic mechanism of formaldehyde adsorption by intrinsic defects and carboxyl groups on the surface of carbon materials. CHEMOSPHERE 2023:139351. [PMID: 37379986 DOI: 10.1016/j.chemosphere.2023.139351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
The adsorption of formaldehyde on the original carbon material is limited. Determining the synergistic adsorption of formaldehyde by different defects on the carbon material is necessary for comprehensively understanding the mechanism of formaldehyde adsorption on the surface of the carbon material. The synergistic effect of intrinsic defects and oxygen-containing functional groups on formaldehyde adsorption on the surface of carbon materials was simulated and verified by experiments. Based on the density functional theory, the adsorption of formaldehyde on different carbon materials was simulated by quantum chemistry. The synergistic adsorption mechanism was studied by energy decomposition analysis, IGMH, QTAIM, and charge transfer, and the binding energy of hydrogen bonds was estimated. The results showed that the energy for the adsorption of formaldehyde adsorbed by the carboxyl group on the vacancy defect was the highest, at -11.86 kcal/mol, the hydrogen bond binding energy was -9.05 kcal/mol, and a larger charge transfer was recorded. The mechanism of synergy was studied comprehensively, and the simulation results were verified at multiple scales. This study provides valuable insights into the effect of carboxyl groups on the adsorption of formaldehyde by activated carbon.
Collapse
Affiliation(s)
- Zekun Sun
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Zhonghua Wang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China.
| | - Xue Yang
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Kaibo An
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Zhibin Qu
- School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Ziyu Tang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Shiwei Lai
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Mingqi He
- School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Lei Yang
- School of Civil and Architectural Engineering, Northeast Petroleum University, Daqing, 163318, China
| | - Bo Zhou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Haiqian Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing, 163318, China
| |
Collapse
|