1
|
Peev S, Yotsova R, Parushev I. Histomorphometric Analysis of Osseointegrated Intraosseous Dental Implants Using Undecalcified Specimens: A Scoping Review. Biomimetics (Basel) 2024; 9:672. [PMID: 39590244 PMCID: PMC11592138 DOI: 10.3390/biomimetics9110672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/19/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Bone histology and histomorphometry are reliable diagnostic tools for the assessment of the bone-implant interface, material safety and biocompatibility, and tissue response. They allow for the qualitative and quantitative analysis of undecalcified bone specimens. This scoping review aims to identify the most common staining techniques, study models for in vivo experiments, and histomorphometric parameters used for quantitative bone evaluation of osseointegrated dental implants in the last decade. The Web of Science, PubMed, and Scopus databases were searched on 1 July 2024 for relevant articles in English, published in the last ten years, and the data were exported to an MS Excel spreadsheet. A total of 115 studies met the eligibility criteria and were included in the present review. The results indicate that the most common study models are dogs, rabbits, and pigs. Some of the most frequently used methods for the assessment of the bone-implant interface are the Toluidine blue, Stevenel's blue with Van Gieson, and Levai-Laczko stainings. The results from this study demonstrate that the most commonly used histomorphometric parameters in implant dentistry are the bone-to-implant contact (BIC), bone area fraction occupancy (BAFO), bone area (BA), and bone density (BD). This review presents the recent trends in histomorphometric analysis of dental implants and identifies some research gaps that necessitate further research.
Collapse
Affiliation(s)
- Stefan Peev
- Department of Periodontology and Dental Implantology, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria;
| | - Ralitsa Yotsova
- Department of Oral Surgery, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria
| | - Ivaylo Parushev
- Department of Clinical Medical Sciences, Faculty of Dental Medicine, Medical University of Varna, 9002 Varna, Bulgaria;
| |
Collapse
|
2
|
Shibli JA, Formiga MC, Elias GA, Mourão CF, Faverani LP, Souza JGS, Iezzi G, Piattelli A. Impact of Implant Surface and Smoking on Peri-Implant Human Bone: What we Learned from The Last 20 Years? Braz Dent J 2024; 35:e246115. [PMID: 39476114 PMCID: PMC11506316 DOI: 10.1590/0103-6440202406115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/15/2024] [Indexed: 11/03/2024] Open
Abstract
The present review summarizes the findings from human histological studies conducted over the past 20 years at the University of Guarulhos, Brazil, examining the impact of various implant surface topographies and smoking on peri-implant bone response. Seven different implant surfaces were evaluated in 90 partially or completely edentulous individuals using a total of 123 micro-implants. Histometric parameters, including bone-implant contact (BIC%), bone area within the threads (BA%), and bone density (BD), were assessed after an 8-week healing period. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were also performed. Results showed that treated surfaces, regardless of the treatment type, consistently demonstrated better histometric outcomes compared to machined surfaces. Anodized surfaces and those subjected to airborne particle abrasion, followed by acid etching, exhibited higher BIC% values than machined surfaces in smoker patients. Smoking reduced BIC% around anodized implants. The presence of inflammatory cells was observed adjacent to the peri-implant soft tissue on some treated surfaces. In conclusion, implant surface topography significantly influences early bone response under unloaded conditions, with treated surfaces promoting better human bone tissue response than machined surfaces. However, smoking negatively impacts peri-implant bone healing, emphasizing the importance of smoking cessation for optimal osseointegration.
Collapse
Affiliation(s)
- Jamil A Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Marcio C Formiga
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Giselle A Elias
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Carlos F Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA, USA
| | - Leonardo P Faverani
- Division of Oral and Maxillofacial Surgery and Implantology, Department of Diagnosis and Surgery, School of Dentistry, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - João G S Souza
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, "G. d'Annunzio"University of Chieti-Pescara, Chieti, Italy
| | - Adriano Piattelli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos, SP, Brazil
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| |
Collapse
|
3
|
Mesa-Restrepo A, Byers E, Brown JL, Ramirez J, Allain JP, Posada VM. Osteointegration of Ti Bone Implants: A Study on How Surface Parameters Control the Foreign Body Response. ACS Biomater Sci Eng 2024; 10:4662-4681. [PMID: 39078702 DOI: 10.1021/acsbiomaterials.4c00114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The integration of titanium (Ti)-based implants with bone is limited, resulting in implant failure. This lack of osteointegration is due to the foreign body response (FBR) that occurs after the implantation of biodevices. The process begins with protein adsorption, which is governed by implant surface properties, e.g., chemistry, charge, wettability, and/or topography. The distribution and composition of the protein layer in turn influence the recruitment, differentiation, and modulation of immune and bone cells. The subsequent events that occur at the bone-material interface will ultimately determine whether the implant is encapsulated or will integrate with bone. Despite the numerous studies evaluating the influence of surface properties in the various stages of the FBR, the factors that affect tissue-material interactions are often studied in isolation or in small correlations due to the technical challenges involved in assessing them in vitro or in vivo. Consequently, the influence of protein conformation on the Ti bone implant surface design remains an unresolved research question. The objective of this review is to comprehensively evaluate the existing literature on the effect of surface parameters of Ti and its alloys in the stages of FBR, with a particular focus on protein adsorption and osteoimmunomodulation. This evaluation aims to systematically describe these effects on bone formation.
Collapse
Affiliation(s)
- Andrea Mesa-Restrepo
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Elizabeth Byers
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Justin L Brown
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Juan Ramirez
- Departamento de Ingeniería Mecánica, Universidad Nacional de Colombia, Cra 64C nro 73-120, 050024 Medellin, Colombia
| | - Jean Paul Allain
- Department of Biomedical Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Viviana M Posada
- Ken and Mary Alice Lindquist Department of Nuclear Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Menhall A, Lahoud P, Yang KR, Park KB, Razukevicius D, Traini T, Makary C. The Mineral Apposition Rate on Implants with Either a Sandblasted Acid-Etched Implant Surface (SLA) or a Nanostructured Calcium-Incorporated Surface (XPEED ®): A Histological Split-Mouth, Randomized Case/Control Human Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3341. [PMID: 38998421 PMCID: PMC11243467 DOI: 10.3390/ma17133341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/30/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
This study aimed to histologically evaluate the effects of XPEED® and SLA surface on the mineral apposition rate (MAR) at 3 and 5 weeks in titanium dental implants placed in human bone. In total, 17 titanium dental implants with XPEED® surface (n = 9) used as test and SLA surface (n = 8) used as control were included in this study. Each patient received four doses of tetracycline 500 mg at 12 h intervals 2 weeks prior to biopsy retrieval. Implant retrieval was performed, and retrieved biopsies were carefully treated for histomorphometric evaluation under epifluorescence microscopy. At 3 and 5 weeks, newly formed bone appeared in direct contact with both types of tested surfaces. At 3 weeks, the MAR value was, respectively, 2.0 (±0.18) μm/day for XPEED® implants and 1.5 (±0.10) μm/day for SLA implants (p = 0.017). At 5 weeks, lower MAR values for both XPEED® and SLA implants were noted, with 1.2 (±0.10) μm/day and 1.1 (±0.10) μm/day, respectively (p = 0.046). The overall evaluation by linear regression analysis for both time and implant surfaces showed a decreased osteoblast activity at 5 weeks compared to 3 weeks (p < 0.005). The results of the present study show that the bone apposition rate occurs faster around implants with XPEED® surface at 3 weeks and 5 weeks of healing. MAR values may support the use of implants with XPEED® surfaces in early loading protocols.
Collapse
Affiliation(s)
- Abdallah Menhall
- Oral Surgery Department, Saint Joseph University of Beirut, Beirut 1104 2020, Lebanon
| | - Pierre Lahoud
- Oral Surgery Department, Saint Joseph University of Beirut, Beirut 1104 2020, Lebanon
| | - Kyung Ran Yang
- Daegu Mir Dental Hospital, Jung-gu, Daegu 41934, Republic of Korea
| | - Kwang Bum Park
- MegaGen Implant Co., Ltd., Daegu 42921, Republic of Korea
| | - Dainius Razukevicius
- Faculty of Odontology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Tonino Traini
- Oral Surgery Department, Saint Joseph University of Beirut, Beirut 1104 2020, Lebanon
- Department of Innovative Technologies in Medicine & Dentistry, University "G. d'Annunzio" of Chieti Pescara, 66100 Chieti, Italy
| | - Christian Makary
- Oral Surgery Department, Saint Joseph University of Beirut, Beirut 1104 2020, Lebanon
| |
Collapse
|
5
|
Yang KR, Hong MH. Improved Biocompatibility and Osseointegration of Nanostructured Calcium-Incorporated Titanium Implant Surface Treatment (XPEED ®). MATERIALS (BASEL, SWITZERLAND) 2024; 17:2707. [PMID: 38893971 PMCID: PMC11173531 DOI: 10.3390/ma17112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024]
Abstract
Surface treatment of implants facilitates osseointegration, with nanostructured surfaces exhibiting accelerated peri-implant bone regeneration. This study compared bone-to-implant contact (BIC) in implants with hydroxyapatite (HA), sand-blasted and acid-etched (SLA), and SLA with calcium (Ca)-coated (XPEED®) surfaces. Seventy-five disk-shaped grade 4 Ti specimens divided into three groups were prepared, with 16 implants per group tested in New Zealand white rabbits. Surface characterization was performed using X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), digital microscopy, and a contact angle analyzer. Cell viability, proliferation, and adhesion were assessed using MC3T3-E1 cells. Apatite formation was evaluated using modified simulated body fluid (m-SBF) incubation. After 4 weeks of healing, the outcomes reviewed were BIC, bone area (BA), removal torque tests, and histomorphometric evaluation. A microstructure analysis revealed irregular pores across all groups, with the XPEED group exhibiting a nanostructured Ca-coated surface. Surface characterization showed a crystalline CaTiO3 layer on XPEED surfaces, with evenly distributed Ca penetrating the implants. All surfaces provided excellent environments for cell growth. The XPEED and SLA groups showed significantly higher cell density and viability with superior osseointegration than HA (p < 0.05); XPEED exhibited the highest absorbance values. Thus, XPEED surface treatment improved implant performance, biocompatibility, stability, and osseointegration.
Collapse
Affiliation(s)
- Kyung Ran Yang
- Daegu Mir Dental Hospital, Jung-gu, Daegu 41934, Republic of Korea;
| | - Min-Ho Hong
- Department of Dental Laboratory Science, College of Health Sciences, Catholic University of Pusan, 57 Oryundae-ro, Geumjeong-gu, Busan 46252, Republic of Korea
| |
Collapse
|
6
|
Makary C, Menhall A, Lahoud P, Yang KR, Park KB, Razukevicius D, Traini T. Bone-to-Implant Contact in Implants with Plasma-Treated Nanostructured Calcium-Incorporated Surface (XPEEDActive) Compared to Non-Plasma-Treated Implants (XPEED): A Human Histologic Study at 4 Weeks. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2331. [PMID: 38793397 PMCID: PMC11123094 DOI: 10.3390/ma17102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024]
Abstract
Titanium implants undergo an aging process through surface hydrocarbon deposition, resulting in decreased wettability and bioactivity. Plasma treatment was shown to significantly reduce surface hydrocarbons, thus improving implant hydrophilicity and enhancing the osseointegration process. This study investigates the effect of plasma surface treatment on bone-to-implant contact (BIC) of implants presenting a nanostructured calcium-incorporated surface (XPEED®). Following a Randomized Controlled Trial (RCT) design, patients undergoing implant surgery in the posterior maxilla received additional plasma-treated (n = 7) or -untreated (n = 5) 3.5 × 8 mm implants that were retrieved after a 4-week healing period for histological examination. Histomorphometric analysis showed that plasma-treated implants exhibited a 38.7% BIC rate compared to 22.4% of untreated implants (p = 0.002), indicating enhanced osseointegration potential. Histological images also revealed increased bone formation and active osteoblastic activity around plasma-treated implants when compared to untreated specimens. The findings suggest that plasma treatment improves surface hydrophilicity and biological response, facilitating early bone formation around titanium implants. This study underscores the importance of surface modifications in optimizing implant integration and supports the use of plasma treatment to enhance osseointegration, thereby improving clinical outcomes in implant dentistry and offering benefits for immediate and early loading protocols, particularly in soft bone conditions.
Collapse
Affiliation(s)
- Christian Makary
- Oral Surgery Department, Saint Joseph University, Beirut P.O. Box 1104-2020, Lebanon; (C.M.); (A.M.); (P.L.)
| | - Abdallah Menhall
- Oral Surgery Department, Saint Joseph University, Beirut P.O. Box 1104-2020, Lebanon; (C.M.); (A.M.); (P.L.)
| | - Pierre Lahoud
- Oral Surgery Department, Saint Joseph University, Beirut P.O. Box 1104-2020, Lebanon; (C.M.); (A.M.); (P.L.)
| | - Kyung Ran Yang
- Daegu Mir Dental Hospital, Daegu 41934, Republic of Korea;
| | - Kwang Bum Park
- MegaGen Implant Co., Ltd., Daegu 42921, Republic of Korea;
| | - Dainius Razukevicius
- Faculty of Odontology, Lithuanian University of Health Sciences, LT-50161 Kaunas, Lithuania;
| | - Tonino Traini
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” of Chieti Pescara, 66100 Chieti, Italy
| |
Collapse
|
7
|
Campos-Bijit V, Inostroza NC, Orellana R, Rivera A, Von Marttens A, Cortez C, Covarrubias C. Influence of Topography and Composition of Commercial Titanium Dental Implants on Cell Adhesion of Human Gingiva-Derived Mesenchymal Stem Cells: An In Vitro Study. Int J Mol Sci 2023; 24:16686. [PMID: 38069008 PMCID: PMC10706644 DOI: 10.3390/ijms242316686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The topography and composition of dental implant surfaces directly impact mesenchymal cell adhesion, proliferation, and differentiation, crucial aspects of achieving osseointegration. However, cell adhesion to biomaterials is considered a key step that drives cell proliferation and differentiation. The aim of this study was to characterize characterize the topography and composition of commercial titanium dental implants manufactured with different surface treatments (two sandblasted/acid-etched (SLA) (INNO Implants, Busan, Republic of Korea; BioHorizonsTM, Oceanside, CA, USA) and two calcium phosphate (CaP) treated (Biounite®, Berazategui, Argentina; Zimmer Biomet, Inc., Warsaw, IN, USA)) and to investigate their influence on the process of cell adhesion in vitro. A smooth surface implant (Zimmer Biomet, Inc.) was used as a control. For that, high-resolution methodologies such as scanning electron microscopy (SEM), X-ray dispersive spectroscopy (EDX), laser scanning confocal microscopy (LSCM), and atomic force microscopy (AFM) were employed. Protein adsorption and retromolar gingival mesenchymal stem cells (GMSCs) adhesion to the implant surfaces were evaluated after 48 h. The adherent cells were examined by SEM and LSCM for morphologic and quantitative analyses. ANOVA and Tukey tests (α = 0.05) were employed to determine statistical significance. SEM revealed that INNO, BioHorizonsTM, and Zimmer implants have an irregular surface, whereas Biounite® has a regular topography consisting of an ordered pattern. EDX confirmed a calcium and phosphate layer on the Biounite® and Zimmer surfaces, and AFM exhibited different roughness parameters. Protein adsorption and cell adhesion were detected on all the implant surfaces studied. However, the Biounite® implant with CaP and regular topography showed the highest protein adsorption capacity and density of adherent GMSCs. Although the Zimmer implant also had a CaP treatment, protein and cell adhesion levels were lower than those observed with Biounite®. Our findings indicated that the surface regularity of the implants is a more determinant factor in the cell adhesion process than the CaP treatment. A regular, nanostructured, hydrophilic, and moderately rough topography generates a higher protein adsorption capacity and thus promotes more efficient cell adhesion.
Collapse
Affiliation(s)
- Vanessa Campos-Bijit
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (V.C.-B.); (N.C.I.); (R.O.)
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago 8380492, Chile
| | - Nicolás Cohn Inostroza
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (V.C.-B.); (N.C.I.); (R.O.)
| | - Rocío Orellana
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (V.C.-B.); (N.C.I.); (R.O.)
| | - Alejandro Rivera
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universidad de los Andes, Santiago 8150513, Chile;
| | - Alfredo Von Marttens
- Department of Prosthesis, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile;
| | - Cristian Cortez
- Escuela de Tecnología Médica, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Cristian Covarrubias
- Laboratory of Nanobiomaterials, Research Institute of Dental Sciences, Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile; (V.C.-B.); (N.C.I.); (R.O.)
| |
Collapse
|