1
|
Antonova OS, Goldberg MA, Fomin AS, Kucheryaev KA, Konovalov AA, Sadovnikova MA, Murzakhanov FF, Sitnikov AI, Leonov AV, Andreeva NA, Khayrutdinova DR, Gafurov MR, Barinov SM, Komlev VS. Meso-Macroporous Hydroxyapatite Powders Synthesized in Polyvinyl Alcohol or Polyvinylpyrrolidone Media. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1338. [PMID: 39195376 DOI: 10.3390/nano14161338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Mesoporous hydroxyapatite (HA) is widely used in various applications, such as the biomedical field, as a catalytic, as a sensor, and many others. The aim of this work was to obtain HA powders by means of chemical precipitation in a medium containing a polymer-polyvinyl alcohol or polyvinylpyrrolidone (PVP)-with concentrations ranging from 0 to 10%. The HA powders were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, atomic emission spectroscopy with inductively coupled plasma, electron paramagnetic resonance, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The specific surface area (SSA), pore volume, and pore size distributions were determined by low-temperature nitrogen adsorption measurements, and the zeta potential was established. The formation of macropores in powder agglomerates was determined using SEM and TEM. The synthesis in 10% PVP increased the SSA from 101.3 to 158.0 m2/g, while the ripening for 7 days led to an increase from 112.3 to 195.8 m2/g, with the total pore volume rising from 0.37 to 0.71 cm3/g. These materials could be classified as meso-macroporous HA. Such materials can serve as the basis for various applications requiring improved textural properties and may lay the foundation for the creation of bulk 3D materials using a technique that allows for the preservation of their unique pore structure.
Collapse
Affiliation(s)
- Olga S Antonova
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Margarita A Goldberg
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander S Fomin
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Kirill A Kucheryaev
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology "MISIS", Moscow 119049, Russia
| | - Anatoliy A Konovalov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | | | - Fadis F Murzakhanov
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya Str., Kazan 420008, Russia
| | - Aleksey I Sitnikov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alexander V Leonov
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nadezhda A Andreeva
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dinara R Khayrutdinova
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Marat R Gafurov
- Institute of Physics, Kazan Federal University, 18 Kremlevskaya Str., Kazan 420008, Russia
| | - Sergey M Barinov
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir S Komlev
- Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
2
|
Goldberg MA, Gafurov MR, Makshakova ON, Smirnov SV, Fomin AS, Murzakhanov FF, Komlev VS. Peculiarities of charge compensation in lithium-doped hydroxyapatite. Heliyon 2024; 10:e25291. [PMID: 38384581 PMCID: PMC10878879 DOI: 10.1016/j.heliyon.2024.e25291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/09/2024] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Hydroxyapatite (HA) remains one of the most popular materials for various biomedical applications and its fields of application have been expanding. Lithium (Li+) is a promising candidate for modifying the biological behavior of HA. Li+ is present in trace amounts in the human body as an alkaline and bioelectric material. At the same time, the introduction of Li+ into the HA structure required charge balance compensation due to the difference in oxidation degree, and the scheme of this compensation is still an open question. In the present work, the results of the theoretical and experimental study of the Li+-doped HA synthesis are presented. According to X-ray diffraction data, Fourier transform infrared spectroscopy as well as the combination of electron paramagnetic resonance methods, the introduction of Li+ in the amount up to 0.05 mol% resulted in the preservation of the HA structure. Density functional theory calculations show that Li+ preferentially incorporates into the Ca (1) position with a small geometry perturbation. The less probable positioning in the Ca (2) position leads to a drastic perturbation of the anion channel.
Collapse
Affiliation(s)
- Margarita A. Goldberg
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, 119334, Russian Federation
| | | | - Olga N. Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, 420111, Russian Federation
| | - Sergey V. Smirnov
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, 119334, Russian Federation
| | - Alexander S. Fomin
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, 119334, Russian Federation
| | | | - Vladimir S. Komlev
- A.A. Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, 119334, Russian Federation
| |
Collapse
|