1
|
Zhang L, Yu Z, Liu S, Liu F, Zhou S, Zhang Y, Tian Y. Advanced progress of adipose-derived stem cells-related biomaterials in maxillofacial regeneration. Stem Cell Res Ther 2025; 16:110. [PMID: 40038758 DOI: 10.1186/s13287-025-04191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 01/24/2025] [Indexed: 03/06/2025] Open
Abstract
The tissue injury in maxillofacial region affects patients' physical function and specific mental health. This decade, utilizing regenerative medicine to achieve tissue regeneration has been proved a hopeful direction. Seed cells play a vital role in regeneration strategy. Among various kinds of stem cells that effectively to regenerate the soft and hard tissue of maxillofacial region, adipose-derived stem cells (ADSCs) have gained increasing interests of researchers due to their abundant sources, easy availability and multi-differentiation potentials in recent decades. Thus, this review focuses on the advances of ADSCs-based biomaterial in maxillofacial regeneration from the progress and strategies perspective. It is structured as introducing the properties of ADSCs, biomaterials (polymers, ceramics and metals) within ADSCs and the latest applications of ADSCs in maxillofacial regeneration, including temporomandibular joint (TMJ), bone, periodontal tissue, tooth, nerve as well as cosmetic field. In order to further facilitate ADSCs-based therapies as an emerging platform for regenerative medicine, this review also emphasized current challenges in translating ADSC-based therapies into clinical application and dissussed the strategies to solve these obstacles.
Collapse
Affiliation(s)
- Lijun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Zihang Yu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shuchang Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Fan Liu
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Shijie Zhou
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yuanyuan Zhang
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China
| | - Yulou Tian
- Department of Orthodontics, School and Hospital of Stomatology, China Medical University, Nanjing North Street 117, Shenyang, 110002, China.
| |
Collapse
|
2
|
Savargaonkar AV, Holloway E, Madruga LYC, Pereira BL, Soares P, Popat KC. Anti-Bacterial Properties and Hemocompatibility of Alkali Treated Nano-Structured Micro-Porous Titanium Surfaces. Biomimetics (Basel) 2025; 10:115. [PMID: 39997138 PMCID: PMC11852526 DOI: 10.3390/biomimetics10020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
Titanium and its alloys have been the material of choice for orthopedic implants due to their excellent physical properties as well as biocompatibility. However, titanium is not able to integrate with bone due to the mismatch of mechanical properties. Additionally, bone has a micro-nano hierarchy, which is absent on titanium's surface. A potential solution to the former is to make the surfaces porous to bring the mechanical properties closer to that of the bone, and a solution for the latter is to fabricate nanostructures. In this study, micro-porous titanium surfaces were hydrothermally treated using an alkali medium to fabricate nanostructures on the existing micro-porosity of the surface. The surface properties were evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and nanoindentation. The anti-bacterial properties of the surfaces were evaluated against Gram-positive and Gram-negative bacteria using fluorescence microscopy and scanning electron microscopy. Blood clotting is shown to improve the surface-to-bone integration; hence, whole blood clotting and platelet adhesion and activation were evaluated using a whole blood clotting assay, fluorescence microscopy, and scanning electron microscopy. The results indicate that nanostructured micro-porous titanium surfaces display significantly enhanced anti-bacterial properties as well as equivalent blood clotting characteristics compared to non-porous titanium surfaces.
Collapse
Affiliation(s)
| | - Emma Holloway
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | - Liszt Y. C. Madruga
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA
| | - Bruno L Pereira
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil
| | - Paulo Soares
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, PR, Brazil
| | - Ketul C. Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Bioengineering, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
3
|
Singh R, Popat KC. Enhancing Antibacterial Properties of Titanium Implants through Covalent Conjugation of Self-Assembling Fmoc-Phe-Phe Dipeptide on Titania Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61714-61724. [PMID: 39478289 PMCID: PMC11565481 DOI: 10.1021/acsami.4c13885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/26/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Bacterial infections and biofilm formation are significant challenges for medical implants. While titanium nanotube engineering improves biocompatibility, it cannot prevent bacterial adhesion and biofilm formation. Optimizing the biomaterial's surface chemistry is vital for its desired functioning in the biological environment. This study demonstrates the covalent conjugating of the self-assembling dipeptide N-fluorenylmethyloxycarbonyl-diphenylalanine (Fmoc-FF) onto titanium nanotube surfaces (TiNTs) without altering the topography. Fmoc-FF peptides, in conjugation with TiNTs, can inhibit biofilm formation, eradicate pre-existing biofilms, and kill bacteria. This functionalization imparts antibacterial properties to the surface while retaining beneficial nanotube topography, synergistically enhancing bioactivity. Surface characterization by XPS, FT-IR, EDS, and SEM confirmed the successful functionalization. Bacterial adhesion experiments showed a significantly improved antibacterial activity of the functionalized TiNT surfaces. This study opens future possibilities for associating biomedical applications such as cell-cell interactions, tissue engineering, and controlled drug delivery of multifunctional self-assembling short peptides with implant materials through surface functionalization.
Collapse
Affiliation(s)
- Ramesh Singh
- Department
of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, Virginia 22030, United States
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| | - Ketul C. Popat
- Department
of Bioengineering, College of Engineering and Computing, George Mason University, Fairfax, Virginia 22030, United States
- Department
of Mechanical Engineering, Colorado State
University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
4
|
Bhattacharjee A, Pereira B, Soares P, Popat KC. Titania (TiO 2) nanotube surfaces doped with zinc and strontium for improved cell compatibility. NANOSCALE 2024; 16:12510-12522. [PMID: 38874593 PMCID: PMC11223589 DOI: 10.1039/d4nr01123f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Titanium-based orthopedic implants are gaining popularity in recent years due to their excellent biocompatibility, superior corrosion resistance and lightweight properties. However, these implants often fail to perform effectively due to poor osseointegration. Nanosurface modification approaches may help to resolve this problem. In this work, TiO2 nanotube (NT) arrays were fabricated on commercially available pure titanium (Ti) surfaces by anodization and annealing. Then, zinc (Zn) and strontium (Sr), important for cell signaling, were doped on the NT surface by hydrothermal treatment. This very simple method of Zn and Sr doping takes less time and energy compared to other complicated techniques. Different surface characterization tools such as scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDS), static water contact angle, X-ray diffraction (XRD) and nanoindentation techniques were used to evaluate the modified surfaces. Then, adipose derived stem cells (ADSCs) were cultured with the surfaces to evaluate cell adhesion, proliferation, and growth on the surfaces. After that, the cells were differentiated towards osteogenic lineage to evaluate alkaline phosphatase (ALP) activity, osteocalcin expression, and calcium phosphate mineralization. Results indicate that NT surfaces doped with Zn and Sr had significantly enhanced ADSC adhesion, proliferation, growth, and osteogenic differentiation compared to an unmodified surface, thus confirming the enhanced performance of these surfaces.
Collapse
Affiliation(s)
- Abhishek Bhattacharjee
- School of Advanced Materials Discovery, Colorado State University, Department of Bioengineering, George Mason University, Fort Collins, CO, USA, Fairfax, VA, USA.
| | - Bruno Pereira
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Paraná, PR, Brazil
| | - Paulo Soares
- Department of Mechanical Engineering, Pontifícia Universidade Católica do Paraná, PR, Brazil
| | - Ketul C Popat
- School of Advanced Materials Discovery, Colorado State University, Department of Bioengineering, George Mason University, Fort Collins, CO, USA, Fairfax, VA, USA.
- Mechanical Engineering, Colorado State University, Fort Collins, CO, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA
- Department of Bioengineering, George Mason University, Fairfax, VA, USA
| |
Collapse
|
5
|
Wu B, Tang Y, Yao K, Luo X, Feng S, Wang K, Zhou X, Xiang L. Ion-incorporated titanium implants for staged regulation of antibacterial activity and immunoregulation-mediated osteogenesis. NANOSCALE 2024; 16:7167-7184. [PMID: 38504613 DOI: 10.1039/d3nr05858a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Antibacterial properties and osteogenic activity are considered as two crucial factors for the initial healing and long-term survivability of orthopedic implants. For decades, various drug-loaded implants to enhance biological activities have been investigated extensively. More importantly, to control the drug release timing is equally significant due to the sequential biological processes after implantation. Hence, developing a staged regulation system on the titanium surface is practically significant. Here, we prepared TiO2 nanotubes (TiO2 NTs) on the titanium surface by anodization, followed by the incorporation of zinc (Zn) and strontium (Sr) sequentially through a hydrothermal process. Surface characterization confirmed the successful fabrication of Zn and Sr-incorporated TiO2 NTs (Zn-Sr/TiO2) on the titanium surface. The ion release results exhibited the differential release characteristic of Zn and Sr, which meant the early-stage release of Zn and the long-term release of Sr. It was exactly in accord with the biological process after implantation, laying the basis of staged regulation after implantation. Zn-Sr/TiO2 showed favorable anti-early infection properties both in vitro and in vivo. Its inhibition effect on bacterial biofilm formation was attributed to the resistance against bacteria's initial adhesion and the killing effect on planktonic bacteria. Additionally, the release of Sr could alleviate infection-induced damage via immunoregulation. The biocompatibility and osteogenic activity mediated by M2 macrophage activation were confirmed with in vitro and in vivo studies. Therefore, it exhibited great potential in staged regulation for antibacterial activity in the early stage and the M2 activation-mediated osteogenic activity in the late stage. The staged regulation process was based on the differential release of Zn and Sr to achieve the early antibacterial effect and the long-term immune-induced osteogenic activity, to prevent implant-related infection and achieve better osseointegration. These two kinds of ions played their roles synergistically and complement mutually. This work is expected to provide an innovative idea for realizing sequential regulation after implantation.
Collapse
Affiliation(s)
- Bingfeng Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Yufei Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Keyi Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xin Luo
- School of Chemical Engineering, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Shuqi Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Kai Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xuemei Zhou
- School of Chemical Engineering, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
6
|
Kret P, Bodzon-Kulakowska A, Drabik A, Ner-Kluza J, Suder P, Smoluch M. Mass Spectrometry Imaging of Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6343. [PMID: 37763619 PMCID: PMC10534324 DOI: 10.3390/ma16186343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The science related to biomaterials and tissue engineering accounts for a growing part of our knowledge. Surface modifications of biomaterials, their performance in vitro, and the interaction between them and surrounding tissues are gaining more and more attention. It is because we are interested in finding sophisticated materials that help us to treat or mitigate different disorders. Therefore, efficient methods for surface analysis are needed. Several methods are routinely applied to characterize the physical and chemical properties of the biomaterial surface. Mass Spectrometry Imaging (MSI) techniques are able to measure the information about molecular composition simultaneously from biomaterial and adjacent tissue. That is why it can answer the questions connected with biomaterial characteristics and their biological influence. Moreover, this kind of analysis does not demand any antibodies or dyes that may influence the studied items. It means that we can correlate surface chemistry with a biological response without any modification that could distort the image. In our review, we presented examples of biomaterials analyzed by MSI techniques to indicate the utility of SIMS, MALDI, and DESI-three major ones in the field of biomaterials applications. Examples include biomaterials used to treat vascular system diseases, bone implants with the effects of implanted material on adjacent tissues, nanofibers and membranes monitored by mass spectrometry-related techniques, analyses of drug-eluting long-acting parenteral (LAPs) implants and microspheres where MSI serves as a quality control system.
Collapse
Affiliation(s)
| | | | | | | | | | - Marek Smoluch
- Department of Analytical Chemistry and Biochemistry, Faculty of Materials Science and Ceramics, AGH University of Krakow, A. Mickiewicza 30, 30-059 Krakow, Poland; (P.K.); (A.B.-K.); (A.D.); (J.N.-K.); (P.S.)
| |
Collapse
|