1
|
Zhang M, Han X, Yang C, Zhang G, Guo W, Li J, Chen Z, Li B, Chen R, Qin C, Hu J, Yang Z, Zeng G, Xiao L, Jia S. Size Uniformity of CsPbBr 3 Perovskite Quantum Dots via Manganese-Doping. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1284. [PMID: 39120388 PMCID: PMC11313879 DOI: 10.3390/nano14151284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
The achievement of size uniformity and monodispersity in perovskite quantum dots (QDs) requires the implementation of precise temperature control and the establishment of optimal reaction conditions. Nevertheless, the accurate control of a range of reaction variables represents a considerable challenge. This study addresses the aforementioned challenge by employing manganese (Mn) doping to achieve size uniformity in CsPbBr3 perovskite QDs without the necessity for the precise control of the reaction conditions. By optimizing the Mn:Pb ratio, it is possible to successfully dope CsPbBr3 QDs with the appropriate concentrations of Mn²⁺ and achieve a uniform size distribution. The spectroscopic measurements on single QDs indicate that the appropriate Mn²⁺ concentrations can result in a narrower spectral linewidth, a longer photoluminescence (PL) lifetime, and a reduced biexciton Auger recombination rate, thus positively affecting the PL properties. This study not only simplifies the size control of perovskite QDs but also demonstrates the potential of Mn-doped CsPbBr3 QDs for narrow-linewidth light-emitting diode applications.
Collapse
Grants
- No. 2022YFA1404201 the National Key Research and Development Program of China
- Nos. 62127817, U22A2091, U23A20380, 62075120, 62222509, 62075122, 62205187, 62105193, 62305201 and 62305200 the Natural Science Foundation of China
- No. 62011530133 NSFC-STINT
- No. IRT_17R70 Program for Changjiang Scholars and Innovative Research Team
- No. 2022M722006 China Postdoctoral Science Foundation
- No. 202303021222031, 202103021223032, 202103021223254 Fundamental Research Program of Shanxi Province
- No. 202204051001014 Shanxi Province Science and Technology Innovation Talent Team
- No. 202201010101005 Shanxi Province Science and Technology Major Special Project
- 202104041101021 Science and Technology Cooperation Project of Shanxi Province
- No. D18001 Shanxi "1331 Project", and 111 project
Collapse
Affiliation(s)
- Mi Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| | - Xue Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| | - Changgang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| | - Wenli Guo
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| | - Jialu Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| | - Zhihao Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| | - Bin Li
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| | - Jianyong Hu
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| | - Zhichun Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| | - Ganying Zeng
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
- College of Physics, Taiyuan University of Technology, Taiyuan 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China; (M.Z.); (X.H.); (C.Y.); (W.G.); (J.L.); (Z.C.); (B.L.); (R.C.); (C.Q.); (J.H.); (Z.Y.); (G.Z.); (S.J.)
| |
Collapse
|
2
|
Wang J, Ying Y, Zhang Y, Ding H, Li Y, Zhang J, Jiang D. Observation of anodic electrochemiluminescence from silicon quantum dots for the detection of hydrogen peroxide. Analyst 2024; 149:3518-3521. [PMID: 38869425 DOI: 10.1039/d4an00626g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Silicon quantum dots (QDs) with stable positively charged intermediates are prepared using chemical etching to generate strong anodic electrochemiluminescence (ECL) under a positive potential. Their surfaces could be passivated in the presence of strong oxidants, leading to enhanced ECL and offering the ability to carry out analysis for hydrogen peroxide.
Collapse
Affiliation(s)
- Jing Wang
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yunfan Ying
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Yuyao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| | - Hao Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| | - Yu Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| | - Jingjing Zhang
- School of Chemistry and Life Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210092, China.
| |
Collapse
|
3
|
Liu Y, Yan M, Shu J, He H, Wang Z, Qin Z, Wang Y, Zhang Y. Enhanced Performance and High Resistance to Efficiency Degradation of Blue Quantum-Dot Light-Emitting Diodes Using the Lewis Base Blended Hole-Transporting Layers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1251-1258. [PMID: 38129975 DOI: 10.1021/acsami.3c17141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The distinctive characteristics of blue quantum dots (QDs) such as their deep valence band and large bandgap give rise to an elevated hole injection barrier between the hole transport layers (HTLs) and the QD active layer. This results in an imbalance of carrier transport and injection across the device, leading to a degrading performance in QD light-emitting diodes (QLEDs). In this paper, high-efficiency and low-efficiency degradation blue CdSe/CdS/ZnS QLEDs were fabricated by using the Lewis base, 1,2-bis(diphenylphosphino)ethane (DPPE), blended with poly(9-vinylcarbazole) (PVK) (DPPE:PVK) as HTLs. The device performance of blue QLEDs can be finely adjusted by manipulating the blending ratio between DPPE and PVK. When 4 wt % DPPE was blended with PVK (4 wt % DPPE:PVK) as the HTL, the device achieved its optimal performance. Compared to the device with neat PVK as the HTL, the turn-on voltage of blue QLEDs with the 4 wt % DPPE:PVK HTL is reduced from 3.21 to 2.9 V. The maximum current efficiency (CE) and external quantum efficiency (EQE) of blue QLEDs increase from 2.92 cd A-1 and 5.89% in neat PVK to 5.75 cd A-1 and 11.75% for the 4 wt % DPPE:PVK HTL. Furthermore, the QLEDs incorporating DPPE:PVK HTLs exhibited exceptional resistance to efficiency degradation (EQE = 8.83%@L = 12,000 cd m-2 for 4 wt % DPPE:PVK as the HTL and EQE = 2.80%@L = 12,000 cd m-2 for neat PVK as the HTL). A more in-depth analysis reveals that enhanced device performance results from the chelating and bridging effect of the bidentate ligand Lewis base DPPE. These effects strengthen the binding of free metal ions in the blue QDs, reduce the charge barriers, enhance the contact between the HTLs and the QD active layer, and ultimately improve hole injection.
Collapse
Affiliation(s)
- Yuyu Liu
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Minming Yan
- School of Advanced Materials, Peking University Shenzhen Graduate School, Shenzhen 518055, P. R. China
| | - Jia Shu
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Hongwei He
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Zi Wang
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Ziyu Qin
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Yunwei Wang
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
| | - Yong Zhang
- School of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, P. R. China
- Guangdong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangzhou 510631, P. R. China
| |
Collapse
|