1
|
Cao J, Zhang Z, Wang L, Lin T, Li H, Zhao Q, Wang H, Liu X, Yang H, Lu B. An adhesive, highly stretchable and low-hysteresis alginate-based conductive hydrogel strain sensing system for motion capture. Int J Biol Macromol 2024; 281:136581. [PMID: 39414213 DOI: 10.1016/j.ijbiomac.2024.136581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/07/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
A strain sensor stands as an indispensable tool for capturing intricate motions in various applications, ranging from human motion monitoring to electronic skin and soft robotics. However, existing strain sensors still face difficulties in simultaneously achieving superior sensing performance sufficing for practical applications like high stretchability and low hysteresis, as well as seamless device fabrication like desirable interfacial adhesion and system-level integration. Herein, we develop a highly stretchable and low-hysteresis strain sensor with adhesive poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/polyacrylamide (PAAm)-sodium alginate (SA) composite hydrogel, allowing the successful construction of a wireless motion capture sensing system that can provide precise data collection within a large deformation range. The resultant composite hydrogel displays favorable interfacial adhesion and robust mechanical stability, and the fabricated strain sensor demonstrates a wide working strain range (up to 500%) with high sensitivity (gauge factor = 11) and ultra-low hysteresis (1.52%), outperforming previous PEDOT-based hydrogel strain sensors. Enabled by the intriguing material properties and high sensing performance, we further demonstrate the fabrication and integration of a wireless motion capture sensing system for diverse applications like human motion monitoring, gesture recognition, and interactive communication.
Collapse
Affiliation(s)
- Jie Cao
- Jiangxi Province Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang Jiaotong Institute, Nanchang 330013, Jiangxi, PR China
| | - Zhilin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, PR China
| | - Lina Wang
- Jiangxi Province Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang Jiaotong Institute, Nanchang 330013, Jiangxi, PR China
| | - Tao Lin
- Department of Orthopedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Qingdao 266035, Shandong, PR China
| | - Hai Li
- Jiangxi Province Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang Jiaotong Institute, Nanchang 330013, Jiangxi, PR China
| | - Qi Zhao
- Jiangxi Province Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang Jiaotong Institute, Nanchang 330013, Jiangxi, PR China
| | - Haibo Wang
- Jiangxi Province Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang Jiaotong Institute, Nanchang 330013, Jiangxi, PR China
| | - Ximei Liu
- Jiangxi Province Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang Jiaotong Institute, Nanchang 330013, Jiangxi, PR China.
| | - Hanjun Yang
- Jiangxi Province Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang Jiaotong Institute, Nanchang 330013, Jiangxi, PR China.
| | - Baoyang Lu
- Jiangxi Province Key Laboratory of Flexible Electronics, Jiangxi Science and Technology Normal University, Nanchang Jiaotong Institute, Nanchang 330013, Jiangxi, PR China.
| |
Collapse
|
2
|
Du F, Ma A, Wang W, Bai L, Chen H, Wei D, Yin K, Yang L, Yang H. Phytic Acid-Functional Cellulose Nanocrystals and Their Application in Self-Healing Nanocomposite Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14602-14612. [PMID: 38963442 DOI: 10.1021/acs.langmuir.4c01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Cellulose nanocrystals (CNCs) have garnered significant attention as a modifiable substrate because of their exceptional performances, including remarkable degradability, high tensile strength, high elastic modulus, and biocompatibility. In this article, the successful adsorption of phytic acid (PA) onto the surface of cellulose nanocrystals @polydopamine (CNC@PDA) was achieved. Taking inspiration from mussels, a dopamine self-polymerization reaction was employed to coat the surface of CNCs with PDA. Utilizing Pickering emulsion, the CNC@PDA-PA nanomaterial was obtained by grafting PA onto CNC@PDA. An environmentally friendly hydrogel was prepared through various reversible interactions using poly(acrylic acid) (PAA) and Fe3+ as raw materials with the assistance of CNC@PDA-PA. By multiple hydrogen bonding and metal-ligand coordination, nanocomposite hydrogels exhibit remarkable mechanical properties (the tensile strength and strain were 1.82 MPa and 442.1%, respectively) in addition to spectacular healing abilities (96.6% after 5 h). The study aimed to develop an innovative approach for fabricating nanocomposite hydrogels with exceptional self-healing capabilities.
Collapse
Affiliation(s)
- Fashuo Du
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| | - Anyao Ma
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Wenxiang Wang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Liangjiu Bai
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| | - Hou Chen
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| | - Donglei Wei
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| | - Kun Yin
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| | - Lixia Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| | - Huawei Yang
- School of Chemistry and Materials Science, Key Laboratory of High Performance and Functional Polymer in the Universities of Shandong Province, Collaborative Innovation Center of Shandong Province for High Performance Fibers and Their Composites, Ludong University, Yantai 264025, China
| |
Collapse
|
3
|
Zhu Y, Yao D, Gao X, Chen J, Wang H, You T, Lu C, Pang X. Recyclable Bimodal Polyvinyl Alcohol/PEDOT:PSS Hydrogel Sensors for Highly Sensitive Strain and Temperature Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32466-32480. [PMID: 38864420 DOI: 10.1021/acsami.4c05878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Multimodal flexible sensors, consisting of multiple sensing units, can sense and recognize different external stimuli by outputting different types of response signals. However, the recovery and recycling of multimodal sensors are impeded by complex structures and the use of multiple materials. Here, a bimodal flexible sensor that can sense strain by resistance change and temperature by voltage change was constructed using poly(vinyl alcohol) hydrogel as a matrix and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) as a sensing material due to its conductivity and thermoelectric effect. The plasticity of hydrogels, along with the simplicity of the sensor's components and structure, facilitates easy recovery and recycling. The incorporation of citric acid and ethylene glycol improved the mechanical properties, strain hysteresis, and antifreezing properties of the hydrogels. The sensor exhibits a remarkable response to strain, characterized by high sensitivity (gauge factor of 4.46), low detection limit (0.1%), fast response and recovery times, minimal hysteresis, and excellent stability. Temperature changes induced by hot air currents, hot objects, and light cause the sensor to exhibit high response sensitivity, fast response time, and good stability. Additionally, variations in ambient humidity and temperature minimally affect the sensor's strain response, and temperature response remains unaffected by humidity changes. The recycled sensors are essentially unchanged for bimodal sensing of strain and temperature. Finally, bimodal sensors are applied to monitor body motion, and robots to sense external stimuli.
Collapse
Affiliation(s)
- Yan Zhu
- School of Chemistry & Chemical Engineering, Henan University of Science &Technology, Luoyang 471003, P. R. China
| | - Dahu Yao
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Xiping Gao
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Jing Chen
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Hui Wang
- School of Chemistry & Chemical Engineering, Henan University of Science &Technology, Luoyang 471003, P. R. China
| | - Tianyan You
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Chang Lu
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, P. R. China
| | - Xinchang Pang
- School of Materials Science and Engineering, Henan University of Science & Technology, Luoyang 471023, P. R. China
| |
Collapse
|
4
|
Mei S, Xu B, Wan J, Chen J. Preparation of CNT/CNF/PDMS/TPU Nanofiber-Based Conductive Films Based on Centrifugal Spinning Method for Strain Sensors. SENSORS (BASEL, SWITZERLAND) 2024; 24:4026. [PMID: 38931809 PMCID: PMC11207652 DOI: 10.3390/s24124026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Flexible conductive films are a key component of strain sensors, and their performance directly affects the overall quality of the sensor. However, existing flexible conductive films struggle to maintain high conductivity while simultaneously ensuring excellent flexibility, hydrophobicity, and corrosion resistance, thereby limiting their use in harsh environments. In this paper, a novel method is proposed to fabricate flexible conductive films via centrifugal spinning to generate thermoplastic polyurethane (TPU) nanofiber substrates by employing carbon nanotubes (CNTs) and carbon nanofibers (CNFs) as conductive fillers. These fillers are anchored to the nanofibers through ultrasonic dispersion and impregnation techniques and subsequently modified with polydimethylsiloxane (PDMS). This study focuses on the effect of different ratios of CNTs to CNFs on the film properties. Research demonstrated that at a 1:1 ratio of CNTs to CNFs, with TPU at a 20% concentration and PDMS solution at 2 wt%, the conductive films crafted from these blended fillers exhibited outstanding performance, characterized by electrical conductivity (31.4 S/m), elongation at break (217.5%), and tensile cycling stability (800 cycles at 20% strain). Furthermore, the nanofiber-based conductive films were tested by attaching them to various human body parts. The tests demonstrated that these films effectively respond to motion changes at the wrist, elbow joints, and chest cavity, underscoring their potential as core components in strain sensors.
Collapse
Affiliation(s)
- Shunqi Mei
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430073, China; (S.M.); (B.X.); (J.C.)
- The Advanced Textile Technology Innovation Center (Jianhu Laboratory), Shaoxing 312000, China
- School of Mechanical & Electrical Engineering, Xi’an Polytechnic University, Xi’an 710048, China
| | - Bin Xu
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430073, China; (S.M.); (B.X.); (J.C.)
| | - Jitao Wan
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430073, China; (S.M.); (B.X.); (J.C.)
| | - Jia Chen
- Hubei Digital Textile Equipment Key Laboratory, Wuhan Textile University, Wuhan 430073, China; (S.M.); (B.X.); (J.C.)
| |
Collapse
|
5
|
Niu H, Li J, Song X, Zhao K, Liu L, Zhou C, Wu G. Multifunctional aqueous polyurethanes with high strength and self-healing efficiency based on silver nanowires for flexible strain sensors. Phys Chem Chem Phys 2024; 26:2175-2189. [PMID: 38164717 DOI: 10.1039/d3cp04319c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Advanced sensor technology is widely applied in human motion monitoring and research. However, it often encounters problems such as scratches, fractures, and aging, which affect its lifespan and reliability. To address these challenges, we draw inspiration from the inherent self-healing properties of organic biological entities in nature to endow our sensors with self-healing capability. In this work, we constructed a reversible multi-hydrogen-bonded physical crosslinking network and introduced aromatic disulfide bonds into the polyurethane backbone. This design not only achieves a very high mechanical strength of the material, but also efficient self-healing properties. At 80 °C, the tensile strength of the WPU-U2D1 material reached 28.88 MPa, with a fracture elongation of 748.64%, and a self-healing efficiency as high as 99.24%. Based on this material, we successfully prepared a flexible conductive composite film (WPU@AgNW) and applied it to flexible strain sensors. The sensor demonstrated excellent sensitivity and reliability in human motion monitoring (electrical conductivity of 2.66 S cm-1), which provides a new idea for realising the breakthrough of high-performance flexible sensors. These outstanding properties makes it have great potential for application in flexible wearable devices, human-computer interaction, bionic electronic devices and other fields.
Collapse
Affiliation(s)
- Haibin Niu
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China.
| | - Jiaqi Li
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China.
| | - Xin Song
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China.
| | - Kaiyang Zhao
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China.
| | - Li Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China.
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Chao Zhou
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China.
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| | - Guangfeng Wu
- School of Chemical Engineering, Changchun University of Technology, Changchun, 130012, China.
- Engineering Research Center of Synthetic Resin and Special Fiber, Ministry of Education, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|