1
|
Yao Y, Peng Y, Deng Z, Shen W, Li M, Zhou L, He R. Realizing Near-Unity Photoluminescence Efficiency in Antimony-Doped Indium-Based Halides Induced by Strong Electron-Phonon Coupling. Inorg Chem 2024; 63:20878-20887. [PMID: 39428632 DOI: 10.1021/acs.inorgchem.4c03666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Exploring a zero-dimensional (0D) hybrid halide with a large Stokes shift and efficient broad-band emission is highly desirable due to its enormous potential for solid-state lighting (SSL) application. However, it is still challenging to develop a highly emissive 0D hybrid halide with low toxicity and remarkable stability. Herein, we developed a novel indium-based metal halide A5In2Cl16·4H2O (A = doubly protonated 1,4-diaminobutane) whose inorganic octahedrons are completely isolated by the organic cations to form the 0D structure. Experimental and theoretical studies confirmed that Sb-doped A5In2Cl16·4H2O exhibits broad yellow emission with a photoluminescence quantum yield (PLQY) of up to 98%. The intense yellow emission can be attributed to the radiative recombination of triplet self-trapped excitons (STEs) in [SbCl6]3- octahedrons caused by the strong electron-phonon coupling. Benefiting from the excellent stability and photoluminescence performance, A5In2Cl16·4H2O:15%Sb was used as the yellow phosphor to prepare a white-light-emitting diode (WLED) device with a color rendering index of 87.8 and a luminous efficiency of up to 36.18 lm/W, demonstrating its potential in SSL applications. This work provides a guidance for developing environmentally friendly, efficient, and stable ultraviolet (UV)-excited broad-band emission materials.
Collapse
Affiliation(s)
- Yuan Yao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuqi Peng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhihao Deng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei Shen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ming Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lei Zhou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rongxing He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Li W, Dong Y, Xie T, Li T, Ning C, Huang T, Li Z, Gao W, Zou B. In Situ Fabrication of Highly Efficient and Stable Cs 2NaInCl 6: Sb 3+@PVDF Composite Films for Optoelectronic Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52921-52931. [PMID: 39307968 DOI: 10.1021/acsami.4c10918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Lead-free double perovskites (DPs) have superior phase stability and optical properties, which make them competitive for future applications in illumination and displays. However, the preparation of DPs was mainly based on high-temperature heating and hydrochloric acid as a solvent to form powders, which increased the risk and cost of the preparation process and limited its further application. In this study, the growth of Cs2NaInCl6: Sb3+ DPs in polyvinylidene difluoride (PVDF) films was achieved using an in situ fabrication strategy with DMSO as the solvent. The prepared Cs2NaInCl6: Sb3+@PVDF composite films (CFs) can achieve a bright blue emission under 302 nm irradiation. To achieve the optimal luminescent performance of CFs, the photoluminescence (PL) intensity of Cs2NaInCl6: Sb3+@PVDF CFs under various in situ preparation conditions was compared. In addition, the photoluminescence quantum yield (PLQY) of CFs was increased from 0.72% to 83.77% by adjusting the doping amount of Sb3+, and the fluorescence lifetimes t1 and t2 were 131.08 and 1048.52 ns, respectively. Temperature-dependent PL spectroscopy and density functional theory (DFT) calculations indicate that these excellent optical properties are derived from the self-trapped excitons (STEs) at the [SbCl6]3- octahedron and [InCl6]3- octahedron connected via Cl-Na-Cl. The CFs also demonstrated excellent environmental stability, maintaining a relatively stable PL intensity even under conditions of water immersion, high temperatures, and ultraviolet (UV) radiation. Finally, we used the CFs to assemble a blue light-emitting device (LED), which showed good and stable blue emission performance at different currents. This work can provide a new idea for preparing DPs, which is conducive to promoting their commercial application in high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Wen Li
- Guangxi Key Lab of Processing for Non-ferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environmental and Materials, Guangxi University, Nanning 530004, China
| | - Yongrun Dong
- Guangxi Key Lab of Processing for Non-ferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environmental and Materials, Guangxi University, Nanning 530004, China
| | - Ting Xie
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Tongzhou Li
- Guangxi Key Lab of Processing for Non-ferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environmental and Materials, Guangxi University, Nanning 530004, China
| | - Chuang Ning
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Tao Huang
- Guangxi Key Lab of Processing for Non-ferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environmental and Materials, Guangxi University, Nanning 530004, China
| | - Zequan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Wei Gao
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Bingsuo Zou
- Guangxi Key Lab of Processing for Non-ferrous Metals and Featured Materials and Key Lab of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education; School of Resources, Environmental and Materials, Guangxi University, Nanning 530004, China
| |
Collapse
|
3
|
Sheng M, Zhu H, Wang S, Liu Z, Zhou G. Accelerated Discovery of Halide Perovskite Materials via Computational Methods: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1167. [PMID: 38998772 PMCID: PMC11243460 DOI: 10.3390/nano14131167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Halide perovskites have gained considerable attention in materials science due to their exceptional optoelectronic properties, including high absorption coefficients, excellent charge-carrier mobilities, and tunable band gaps, which make them highly promising for applications in photovoltaics, light-emitting diodes, synapses, and other optoelectronic devices. However, challenges such as long-term stability and lead toxicity hinder large-scale commercialization. Computational methods have become essential in this field, providing insights into material properties, enabling the efficient screening of large chemical spaces, and accelerating discovery processes through high-throughput screening and machine learning techniques. This review further discusses the role of computational tools in the accelerated discovery of high-performance halide perovskite materials, like the double perovskites A2BX6 and A2BB'X6, zero-dimensional perovskite A3B2X9, and novel halide perovskite ABX6. This review provides significant insights into how computational methods have accelerated the discovery of high-performance halide perovskite. Challenges and future perspectives are also presented to stimulate further research progress.
Collapse
Affiliation(s)
- Ming Sheng
- College of Engineering, Shandong Xiehe University, Jinan 250109, China
| | - Hui Zhu
- College of Engineering, Shandong Xiehe University, Jinan 250109, China
| | - Suqin Wang
- College of Engineering, Shandong Xiehe University, Jinan 250109, China
| | - Zhuang Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Guangtao Zhou
- College of Engineering, Shandong Xiehe University, Jinan 250109, China
| |
Collapse
|
4
|
Yun X, Nie J, Hu H, Zhong H, Xu D, Shi Y, Li H. Zero-Dimensional Tellurium-Based Organic-Inorganic Hybrid Halide Single Crystal with Yellow-Orange Emission from Self-Trapped Excitons. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:46. [PMID: 38202501 PMCID: PMC10780417 DOI: 10.3390/nano14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Organic-inorganic hybrid halides and their analogs that exhibit efficient broadband emission from self-trapped excitons (STEs) offers an unique pathway towards realization of highly efficient white light sources for lighting applications. An appropriate dilution of ns2 ions into a halide host is essential to produce auxiliary emissions. However, the realization of ns2 cation-based halides phosphor that can be excited by blue light-emitting diode (LED) is still rarely reported. In this study, a zero-dimensional Te-based single crystal (C8H20N)2TeCl6 was synthesized, which exhibits a yellow-orange emission centered at 600 nm with a full width at half maximum of 130 nm upon excitation under 437 nm. Intense electron-phonon coupling was confirmed in the (C8H20N)2TeCl6 single crystal and the light emitting mechanism is comprehensively discussed. The results of this study are pertinent to the emissive mechanism of Te-based hybrid halides and can facilitate discovery of unidentified metal halides with broadband excitation features.
Collapse
Affiliation(s)
- Xiangyan Yun
- Department of Physics, Beijing Technology and Business University, Beijing 100048, China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Jingheng Nie
- Guangdong Rare Earth Photofunctional Materials Engineering Technology Research Center, School of Chemistry and Environment, Jiaying University, Meizhou 514015, China
| | - Hanlin Hu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen 518060, China
| | - Haizhe Zhong
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Denghui Xu
- Department of Physics, Beijing Technology and Business University, Beijing 100048, China
| | - Yumeng Shi
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China;
| | - Henan Li
- School of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China;
| |
Collapse
|