1
|
Tian X, Yuan Y. Impacts of polyethylene glycol (PEG) dispersity on protein adsorption, pharmacokinetics, and biodistribution of PEGylated gold nanoparticles. RSC Adv 2024; 14:20757-20764. [PMID: 38952930 PMCID: PMC11216039 DOI: 10.1039/d4ra03153a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
PEGylated gold nanoparticles (PEG-AuNPs) are widely used in drug delivery, imaging and diagnostics, therapeutics, and biosensing. However, the effect of PEG dispersity on the molecular weight (M W) distribution of PEG grafted onto AuNP surfaces has been rarely reported. This study investigates the effect of PEG dispersity on the M W distribution of PEG grafted onto AuNP surfaces and its subsequent impact on protein adsorption and pharmacokinetics, by modifying AuNPs with monodisperse PEG methyl ether thiols (mPEG n -HS, n = 36, 45) and traditional polydisperse mPEG2k-SH (M W = 1900). Polydisperse PEG-AuNPs favor the enrichment of lower M W PEG fractions on their surface due to the steric hindrance effect, which leads to increased protein adsorption. In contrast, monodisperse PEG-AuNPs have a uniform length of PEG outlayer, exhibiting markedly lower yet constant protein adsorption. Pharmacokinetics analysis in tumor-bearing mice demonstrated that monodisperse PEG-AuNPs possess a significantly prolonged blood circulation half-life and enhanced tumor accumulation compared with their polydisperse counterpart. These findings underscore the critical, yet often underestimated, impacts of PEG dispersity on the in vitro and in vivo behavior of PEG-AuNPs, highlighting the role of monodisperse PEG in enhancing therapeutic nanoparticle performance.
Collapse
Affiliation(s)
- Xinsheng Tian
- Institute of Smart Biomedical Materials, Zhejiang Sci-Tech University Hangzhou 310018 China
- Biomatrik Inc. 501 Changsheng South Road, Nanhu Jiaxing 314001 China
| | - Yumin Yuan
- Biomatrik Inc. 501 Changsheng South Road, Nanhu Jiaxing 314001 China
| |
Collapse
|
2
|
Fromme T, Reichenberger S, Tibbetts KM, Barcikowski S. Laser synthesis of nanoparticles in organic solvents - products, reactions, and perspectives. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:638-663. [PMID: 38887526 PMCID: PMC11181208 DOI: 10.3762/bjnano.15.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024]
Abstract
Laser synthesis and processing of colloids (LSPC) is an established method for producing functional and durable nanomaterials and catalysts in virtually any liquid of choice. While the redox reactions during laser synthesis in water are fairly well understood, the corresponding reactions in organic liquids remain elusive, particularly because of the much greater complexity of carbon chemistry. To this end, this article first reviews the knowledge base of chemical reactions during LSPC and then deduces identifiable reaction pathways and mechanisms. This review also includes findings that are specific to the LSPC method variants laser ablation (LAL), fragmentation (LFL), melting (LML), and reduction (LRL) in organic liquids. A particular focus will be set on permanent gases, liquid hydrocarbons, and solid, carbonaceous species generated, including the formation of doped, compounded, and encapsulated nanoparticles. It will be shown how the choice of solvent, synthesis method, and laser parameters influence the nanostructure formation as well as the amount and chain length of the generated polyyne by-products. Finally, theoretical approaches to address the mechanisms of organic liquid decomposition and carbon shell formation are highlighted and discussed regarding current challenges and future perspectives of LSPC using organic liquids instead of water.
Collapse
Affiliation(s)
- Theo Fromme
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Sven Reichenberger
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| | - Katharine M Tibbetts
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Stephan Barcikowski
- Technical Chemistry I and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitätsstrasse 7, 45141 Essen, Germany
| |
Collapse
|
3
|
Yin C, Hemstedt J, Scheuer K, Struczyńska M, Weber C, Schubert US, Bossert J, Jandt KD. The Effect of Stereocomplexation and Crystallinity on the Degradation of Polylactide Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:440. [PMID: 38470771 DOI: 10.3390/nano14050440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Polymeric nanoparticles (PNPs) are frequently researched and used in drug delivery. The degradation of PNPs is highly dependent on various properties, such as polymer chemical structure, size, crystallinity, and melting temperature. Hence, a precise understanding of PNP degradation behavior is essential for optimizing the system. This study focused on enzymatic hydrolysis as a degradation mechanism by investigation of the degradation of PNP with various crystallinities. The aliphatic polyester polylactide ([C3H4O2]n, PLA) was used as two chiral forms, poly l-lactide (PlLA) and poly d-lactide (PdLA), and formed a unique crystalline stereocomplex (SC). PNPs were prepared via a nanoprecipitation method. In order to further control the crystallinity and melting temperatures of the SC, the polymer poly(3-ethylglycolide) [C6H8O4]n (PEtGly) was synthesized. Our investigation shows that the PNP degradation can be controlled by various chemical structures, crystallinity and stereocomplexation. The influence of proteinase K on PNP degradation was also discussed in this research. AFM did not reveal any changes within the first 24 h but indicated accelerated degradation after 7 days when higher EtGly content was present, implying that lower crystallinity renders the particles more susceptible to hydrolysis. QCM-D exhibited reduced enzyme adsorption and a slower degradation rate in SC-PNPs with lower EtGly contents and higher crystallinities. A more in-depth analysis of the degradation process unveiled that QCM-D detected rapid degradation from the outset, whereas AFM exhibited delayed changes of degradation. The knowledge gained in this work is useful for the design and creation of advanced PNPs with enhanced structures and properties.
Collapse
Affiliation(s)
- Chuan Yin
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Jenny Hemstedt
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Karl Scheuer
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Maja Struczyńska
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
| | - Christine Weber
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Ulrich S Schubert
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
| | - Jörg Bossert
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
| | - Klaus D Jandt
- Chair of Material Science (CMS), Otto Schott Institute for Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
| |
Collapse
|