1
|
Pourmadadi M, Ahmadi MJ, Dinani HS, Ajalli N, Dorkoosh F. Theranostic applications of stimulus-responsive systems based on Fe2O3. Pharm Nanotechnol 2022; 10:90-112. [PMID: 35142274 DOI: 10.2174/2211738510666220210105113] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/18/2021] [Accepted: 11/26/2021] [Indexed: 11/22/2022]
Abstract
According to the interaction of nanoparticles with biological systems, enthusiasm for nanotechnology in biomedical applications has been developed in the past decades. Fe2O3 nanoparticles, as the most stable iron oxide, have special merits that make them useful widely for detecting diseases, therapy, drug delivery, and monitoring the therapeutic process. This review presents the fabrication methods of Fe2O3-based materials and their photocatalytic and magnetic properties. Then, we highlight the application of Fe2O3-based nanoparticles in diagnosis and imaging, different therapy methods, and finally, stimulus-responsive systems, such as pH-responsive, magnetic-responsive, redox-responsive, and enzyme-responsive, with an emphasis on cancer treatment. In addition, the potential of Fe2O3 to combine diagnosis and therapy within a single particle called theranostic agent will be discussed.
Collapse
Affiliation(s)
- Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Javad Ahmadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Narges Ajalli
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Farid Dorkoosh
- Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
- Medical Biomaterial Research Center (MBR), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Hybrid magneto-fluorescent nano-probe for live apoptotic cells monitoring at brain cerebral ischemia. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:485-492. [DOI: 10.1016/j.msec.2019.03.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/19/2018] [Accepted: 03/09/2019] [Indexed: 12/28/2022]
|
3
|
Assadian E, Dezhampanah H, Seydi E, Pourahmad J. Toxicity of Fe 2 O 3 nanoparticles on human blood lymphocytes. J Biochem Mol Toxicol 2019; 33:e22303. [PMID: 30811714 DOI: 10.1002/jbt.22303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 12/26/2022]
Abstract
Magnetic nanoparticles (NPs) are used to a large extent in the targeted delivery of therapeutic agents. In this study, we aimed to investigate the possible toxicity of Fe2 O 3 NPs on human cells, including blood lymphocytes. We isolated blood lymphocytes from healthy humans using Ficoll polysaccharide and subsequently by gradient centrifugation. Then, the toxicity parameters, including cell viability, reactive oxygen species (ROS) formation, lipid peroxidation, cellular glutathione (GSH) level, mitochondrial and lysosomal damage, were measured in blood lymphocytes after exposure to Fe 2 O 3 NPs. Our results indicated that Fe 2 O 3 NPs significantly (dependent on concentration) reduced the cell viability, and the IC 50 was determined to be 1 mM. With increasing concentrations, we found that Fe 2 O 3 NPs-induced cell toxicity was associated with a significant increase in intracellular ROS and loss of mitochondrial membrane potential and lysosomal membrane leakiness. Consequently, these NPs at different concentrations affect GSH level and cause oxidative stress in human lymphocytes.
Collapse
Affiliation(s)
- Evelyn Assadian
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Dezhampanah
- Department of Chemistry, Faculty of Science, University of Guilan, Rasht, Iran
| | - Enayatollah Seydi
- Department of Occupational Health Engineering, Faculty of Health, Alborz University of Medical Sciences, Karaj, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Divya NG, Junaid Bushiri M. High index facet bounded α-Fe2O3 pseudocubic nanocrystals with enhanced electrochemical properties: Zn2+ ion assisted solvo-hydrothermal synthesis. CrystEngComm 2019. [DOI: 10.1039/c8ce01837e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pseudocubic α-Fe2O3 nanocrystals were grown by a surfactant-free, low temperature, solvo-hydrothermal process and characterised by XRD, FESEM, TEM, FTIR, Raman, XPS and UV-vis analysis.
Collapse
Affiliation(s)
- Neravathu G. Divya
- Department of Physics
- Cochin University of Science and Technology
- Kochi
- India
| | - M. Junaid Bushiri
- Department of Physics
- Cochin University of Science and Technology
- Kochi
- India
| |
Collapse
|
5
|
Hoshiar AK, Le TA, Amin FU, Kim MO, Yoon J. A Novel Magnetic Actuation Scheme to Disaggregate Nanoparticles and Enhance Passage across the Blood-Brain Barrier. NANOMATERIALS 2017; 8:nano8010003. [PMID: 29271927 PMCID: PMC5791090 DOI: 10.3390/nano8010003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/14/2017] [Accepted: 12/16/2017] [Indexed: 01/21/2023]
Abstract
The blood–brain barrier (BBB) hinders drug delivery to the brain. Despite various efforts to develop preprogramed actuation schemes for magnetic drug delivery, the unmodeled aggregation phenomenon limits drug delivery performance. This paper proposes a novel scheme with an aggregation model for a feed-forward magnetic actuation design. A simulation platform for aggregated particle delivery is developed and an actuation scheme is proposed to deliver aggregated magnetic nanoparticles (MNPs) using a discontinuous asymmetrical magnetic actuation. The experimental results with a Y-shaped channel indicated the success of the proposed scheme in steering and disaggregation. The delivery performance of the developed scheme was examined using a realistic, three-dimensional (3D) vessel simulation. Furthermore, the proposed scheme enhanced the transport and uptake of MNPs across the BBB in mice. The scheme presented here facilitates the passage of particles across the BBB to the brain using an electromagnetic actuation scheme.
Collapse
Affiliation(s)
- Ali Kafash Hoshiar
- Faculty of Industrial and Mechanical Engineering, Islamic Azad University, Qazvin Branch, Qazvin 34199-15195, Iran.
| | - Tuan-Anh Le
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea.
| | - Faiz Ul Amin
- Department of Biology and Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Myeong Ok Kim
- Department of Biology and Applied Life Science, Gyeongsang National University, Jinju 660-701, Korea.
| | - Jungwon Yoon
- School of Integrated Technology, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Korea.
| |
Collapse
|
6
|
Saito A, Mekawy MM, Sumiyoshi A, Riera JJ, Shimizu H, Kawashima R, Tominaga T. Noninvasive targeting delivery and in vivo magnetic resonance tracking method for live apoptotic cells in cerebral ischemia with functional Fe2O3 magnetic nanoparticles. J Nanobiotechnology 2016; 14:19. [PMID: 26969152 PMCID: PMC4788935 DOI: 10.1186/s12951-016-0173-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/26/2016] [Indexed: 11/14/2022] Open
Abstract
Background Apoptotic neuronal death is known as programmed cell death. Inhibition of this progression might contribute to a new treatment strategy. However, methods for in vivo detection of live apoptotic cells are in need to be developed and established. Context and purpose The purpose of this study is to develop a new method for in vivo brain imaging for live apoptotic lesions using magnetic resonance imaging (MRI). We focused on the specific accumulation of our recently developed functional magnetic nanoparticles (FMNPs) into apoptotic cells using a rat cerebral ischemia model. Sulphorhodamine B, fluorescent dye was linked to valylalanylaspartic acid fluoromethyl ketone as a pan-caspase inhibitor to form SR-FLIVO. SR-FLIVO was bound with FMNPs to develop SR-FLIVO-FMNP probe. Ischemic rat brains were scanned by 7T MRI before and after intravenous injection of SR-FLIVO-FMNP and the distribution was evaluated by subtraction images of T2* colored mapping. SR-FLIVO, intracellular FMNPs, and T2* reduction area were histologically analyzed. The distribution of SR-FLIVO-FMNP was evaluated by subtracting the T2* signal images and was significantly correlated with the histological findings by TUNEL staining. Results Our experimental results revealed several findings where our newly developed probe SR-FLIVO-FMNP was intravenously administered into ischemic rats and FLIVO expression was tracked and found in apoptotic cells in rat brains after cerebral ischemia. A remarkable T2* reduction within the ischemic lesion was recorded using MRI based SR-FLIVO-FMNP probe as a contrasting agent due to the specific probe accumulation in apoptotic cells whereas, no observation of T2* reduction within the non-ischemic lesion due to no probe accumulation in non-apoptotic cells. Histological analysis based on the correlation between FLIVO and TUNEL staining showed that almost all FLIVO-positive cells were positive for TUNEL staining. These findings suggest the possibility for establishment of in vivo targeting delivery methods to live apoptotic cells based on conjugation of magnetic and fluorescent dual functional probes. Conclusion A newly developed probe SR-FLIVO-FMNP might be considered as a useful probe for in vivo apoptotic detection, and FMNPs might be a strong platform for noninvasive imaging and targeting delivery. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0173-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Neurosurgery, Aomori Prefectural Central Hospital, 2-1-1 Higashitsukurimichi, Aomori, 030-8553, Japan. .,Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| | - Moataz M Mekawy
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan. .,National Institute for Materials Science, 1-Chome-2-1 Sengen, Tsukuba, Ibaraki Prefecture, 305-0047, Japan.
| | - Akira Sumiyoshi
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Jorge J Riera
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Hiroaki Shimizu
- Department of Neurosurgery, Graduate School of Medicine, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Ryuta Kawashima
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|